资源利用与环境保护 |
|
|
|
|
土壤类型对超积累植物东南景天叶际微生物群落结构和功能的影响 |
姜悦(),罗继鹏,乔亚蓓,李雨航,张雨,周润惠,李廷强() |
浙江大学环境与资源学院,污染环境修复与生态健康教育部重点实验室,浙江 杭州 310058 |
|
Effects of soil typeson phyllosphere microbial community structure and function of hyperaccumulator Sedum alfredii |
Yue JIANG(),Jipeng LUO,Yabei QIAO,Yuhang LI,Yu ZHANG,Runhui ZHOU,Tingqiang LI() |
Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China |
引用本文:
姜悦,罗继鹏,乔亚蓓,李雨航,张雨,周润惠,李廷强. 土壤类型对超积累植物东南景天叶际微生物群落结构和功能的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 758-770.
Yue JIANG,Jipeng LUO,Yabei QIAO,Yuhang LI,Yu ZHANG,Runhui ZHOU,Tingqiang LI. Effects of soil typeson phyllosphere microbial community structure and function of hyperaccumulator Sedum alfredii. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 758-770.
链接本文:
https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.03.292
或
https://www.zjujournals.com/agr/CN/Y2024/V50/I5/758
|
1 |
VORHOLT J A. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology, 2012, 10(12): 828-840. DOI: 10.1038/nrmicro2910
doi: 10.1038/nrmicro2910
|
2 |
RASTOGI G, SBODIO A, TECH J J, et al. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce[J]. The ISME Journal, 2012, 6(10): 1812-1822. DOI: 10.1038/ismej.2012.32
doi: 10.1038/ismej.2012.32
|
3 |
JACKSON C R, DENNEY W C. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern magnolia (Magnolia grandiflora)[J]. Microbial Ecology, 2011, 61: 113-122. DOI: 10.1007/s00248-010-9742-2
doi: 10.1007/s00248-010-9742-2
|
4 |
SINGH P, SANTONI S, WEBER A, et al. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures[J]. Scientific Reports, 2019, 9(1): 14294. DOI: 10.1038/s41598-019-50839-0
doi: 10.1038/s41598-019-50839-0
|
5 |
周凌云,向芬,刘红艳,等.茶白星病不同病情等级下叶际细菌群落多样性与功能预测[J].茶叶通讯,2019,46(1):24-31. DOI:10.3969/j.issn.1009-525X.2019.01.005 ZHOU L Y, XIANG F, LIU H Y, et al. Function prediction and phyllosphere bacterial diversities on leaves with different severities of tea white scab disease[J]. Journal of Tea Commu-nication, 2019, 46(1): 24-31. (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-525X.2019.01.005
|
6 |
高爽.柑橘叶表细菌种群结构与溃疡病的关联研究[D].长沙:湖南农业大学,2016. GAO S. Associated diversity of phyllosphere bacterium with canker disease[D]. Changsha: Hunan Agricultural University, 2016. (in Chinese with English abstract)
|
7 |
ZHU Y G, XIONG C, WEI Z, et al. Impacts of global change on the phyllosphere microbiome[J]. New Phytologist, 2022, 234(6): 1977-1986. DOI: 10.1111/nph.17928
doi: 10.1111/nph.17928
|
8 |
WAGNER M R, LUNDBERG D S, DEL RIO T G, et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant[J]. Nature Communications, 2016, 7: 12151. DOI: 10.1038/ncomms12151
doi: 10.1038/ncomms12151
|
9 |
BECHTOLD E K, RYAN S, MOUGHAN S E, et al. Phyllo-sphere community assembly and response to drought stress on common tropical and temperate forage grasses[J]. Applied and Environmental Microbiology, 2021, 87(17): e00895-21. DOI: 10.1128/AEM.00895-21
doi: 10.1128/AEM.00895-21
|
10 |
LAFOREST-LAPOINTE I, MESSIER C, KEMBEL S W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure[J]. Microbiome, 2016, 4(1): 27. DOI: 10.1186/s40168-016-0174-1
doi: 10.1186/s40168-016-0174-1
|
11 |
周慧娜,张涛,徐自恒,等.山桐子叶际微生物群落多样性、结构及功能预测分析[J].经济林研究,2022,40(4):163-172. DOI:10.14067/j.cnki.1003-8981.2022.04.018 ZHOU H N, ZHANG T, XU Z H, et al. Diversity, structure and function prediction of phyllospheric microorganism community in Idesia polycarpa [J]. Non-wood Forest Research, 2022, 40(4): 163-172. (in Chinese with English abstract)
doi: 10.14067/j.cnki.1003-8981.2022.04.018
|
12 |
许国琪,刘怡萱,曹鹏熙,等.青藏高原冰川棘豆(Oxytropis glacialis)内生菌核心微生物组的界定及其互作网络分析[J].微生物学通报,2020,47(9):2746-2758. DOI:10.13344/j.microbiol.china.200307 XU G Q, LIU Y X, CAO P X, et al. Core microflora and endophytic interaction network of Oxytropis glacialis in Qinghai-Tibet Plateau[J]. Microbiology China, 2020, 47(9): 2746-2758. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.200307
|
13 |
罗继鹏,陶琦,吴可人,等.超积累植物内生微生物群落组成特征及其功能研究进展[J].浙江大学学报(农业与生命科学版),2018,44(5):515-529. DOI:10.3785/j.issn.1008-9209.2017.09.208 LUO J P, TAO Q, WU K R, et al. Research progress in composition and function of hyperaccumulator-associated endogenous microorganism community[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 515-529. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2017.09.208
|
14 |
SMITH R A, COUCHE G A. The phylloplane as a source of Bacillus thuringiensis variants[J]. Applied and Environmental Microbiology, 1991, 57(1): 311-315. DOI: 10.1128/aem.57.1.311-315.1991
doi: 10.1128/aem.57.1.311-315.1991
|
15 |
D’ALESSANDRO M, ERB M, TON J, et al. Volatiles pro-duced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions[J]. Plant, Cell & Environment, 2014, 37(4): 813-826. DOI: 10.1111/pce.12220
doi: 10.1111/pce.12220
|
16 |
MATSUMOTO H, FAN X Y, WANG Y, et al. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants, 2021, 7(1): 60-72. DOI: 10.1038/s41477-020-00826-5
doi: 10.1038/s41477-020-00826-5
|
17 |
KOENIG R L, MORRIS R O, POLACCO J C. tRNA is the source of low-level trans-zeatin production in Methylobac-terium spp.[J]. Journal of Bacteriology, 2002, 184(7): 1832-1842. DOI: 10.1128/JB.184.7.1832-1842.2002
doi: 10.1128/JB.184.7.1832-1842.2002
|
18 |
ARUN K D, SABARINATHAN K G, GOMATHY M, et al. Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria[J]. Journal of Basic Microbiology, 2020, 60(9): 768-786. DOI: 10.1002/jobm.202000011
doi: 10.1002/jobm.202000011
|
19 |
ETESAMI H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects[J]. Ecotoxicology and Envi-ronmental Safety, 2018, 147: 175-191. DOI: 10.1016/j.ecoenv.2017.08.032
doi: 10.1016/j.ecoenv.2017.08.032
|
20 |
BECKER S H, DARWIN K H. Bacterial proteasomes: mecha-nistic and functional insights[J]. Microbiology and Molecular Biology Reviews, 2017, 81(1): e00036-16. DOI: 10.1128/MMBR.00036-16
doi: 10.1128/MMBR.00036-16
|
21 |
YANG X E, LONG X X, YE H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259: 181-189. DOI: 10.1023/B:PLSO.0000020956.24027.f2
doi: 10.1023/B:PLSO.0000020956.24027.f2
|
22 |
LUO J P, TAO Q, JUPA R, et al. Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii [J]. Environmental Science & Technology, 2019, 53(12): 6954-6963. DOI: 10.1021/acs.est.9b01093
doi: 10.1021/acs.est.9b01093
|
23 |
鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000. BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
|
24 |
LIU B W, JU Y W, XIA C, et al. The effect of Epichloë endophyte on phyllosphere microbes and leaf metabolites in Achnatherum inebrians [J]. iScience, 2022, 25(4): 104144. DOI: 10.1016/j.isci.2022.104144
doi: 10.1016/j.isci.2022.104144
|
25 |
AYDOGAN E L, BUDICH O, HARDT M, et al. Global warming shifts the composition of the abundant bacterial phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the grassland phyllo-sphere of a long-term warming field experiment[J]. FEMS Microbiology Ecology, 2020, 96(8): fiaa087. DOI: 10.1093/femsec/fiaa087
doi: 10.1093/femsec/fiaa087
|
26 |
XU P, FAN X Y, MAO Y X, et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens[J]. Journal of Advanced Research, 2022, 39: 49-60. DOI: 10.1016/j.jare.2021.10.003
doi: 10.1016/j.jare.2021.10.003
|
27 |
李聪聪,朱秉坚,徐琳,等.高寒草甸优势植物叶内、根内与土壤原核微生物群落的分异[J].生态学报,2020,40(14):4942-4953. DOI:10.5846/stxb201908221746 LI C C, ZHU B J, XU L, et al. Differentiations of prokaryotic communities in leaf and root endosphere of dominant plants and bulk soils in alpine meadows[J]. Acta Ecologica Sinica, 2020, 40(14): 4942-4953. (in Chinese with English abstract)
doi: 10.5846/stxb201908221746
|
28 |
YANG D S, ZHANG J, LI M X, et al. Metabolomics analysis reveals the salt-tolerant mechanism in Glycine soja [J]. Journal of Plant Growth Regulation, 2017, 36(2): 460-471. DOI: 10.1007/s00344-016-9654-6
doi: 10.1007/s00344-016-9654-6
|
29 |
MASSALHA H, KORENBLUM E, THOLL D, et al. Small molecules below-ground: the role of specialized metabolites in the rhizosphere[J]. The Plant Journal, 2017, 90(4): 788-807. DOI: 10.1111/tpj.13543
doi: 10.1111/tpj.13543
|
30 |
DURÁN P, THIERGART T, GARRIDO-OTER R, et al. Micro-bial interkingdom interactions in roots promote Arabidopsis survival[J]. Cell, 2018, 175(4): 973-983. DOI: 10.1016/j.cell.2018.10.020
doi: 10.1016/j.cell.2018.10.020
|
31 |
QIAN X, CHEN L, GUO X M, et al. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient[J]. PeerJ, 2018, 6: e5767. DOI: 10.7717/peerj.5767
doi: 10.7717/peerj.5767
|
32 |
GAO C, XU L, MONTOYA L, et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities[J]. Nature Communications, 2022, 13(1): 3867. DOI: 10.1038/s41467-022-31343-y
doi: 10.1038/s41467-022-31343-y
|
33 |
LI P D, ZHU Z R, ZHANG Y Z, et al. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome, 2022, 10(1): 56. DOI: 10.1186/s40168-022-01234-x
doi: 10.1186/s40168-022-01234-x
|
34 |
CHU C Q, FAN M Y, SONG C Y, et al. Unveiling endophytic bacterial community structures of different rice cultivars grown in a cadmium-contaminated paddy field[J]. Frontiers in Microbiology, 2021, 12: 756327. DOI: 10.3389/fmicb.2021.756327
doi: 10.3389/fmicb.2021.756327
|
35 |
HOU D D, WANG K, LIU T, et al. Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii [J]. Environmental Science & Technology, 2017, 51(10): 5675-5684. DOI: 10.1021/acs.est.6b06531
doi: 10.1021/acs.est.6b06531
|
36 |
YU X A, ZHOU T, ZHAO J, et al. Remediation of a metal-contaminated soil by chemical washing and repeated phyto-extraction: a field experiment[J]. International Journal of Phytoremediation, 2021, 23(6): 577-584. DOI: 10.1080/15226514.2020.1840509
doi: 10.1080/15226514.2020.1840509
|
37 |
ZHANG Z W, DENG Z L, TAO Q, et al. Salicylate and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea [J]. Chemosphere, 2022, 292: 133466. DOI: 10.1016/j.chemosphere.2021.133466
doi: 10.1016/j.chemosphere.2021.133466
|
38 |
COBBETT C, GOLDSBROUGH P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology, 2002, 53: 159-182. DOI: 10.1146/annurev.arplant.53.100301.135154
doi: 10.1146/annurev.arplant.53.100301.135154
|
39 |
MUEHE E M, WEIGOLD P, ADAKTYLOU I J, et al. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri [J]. Applied and Environmental Microbiology, 2015, 81(6): 2173-2181. DOI: 10.1128/AEM.03359-14
doi: 10.1128/AEM.03359-14
|
40 |
SÁNCHEZ-LÓPEZ A S, PINTELON I, STEVENS V, et al. Seed endophyte microbiome of Crotalaria pumila unpeeled: identification of plant-beneficial methylobacteria[J]. Inter-national Journal of Molecular Sciences, 2018, 19(1): 291. DOI: 10.3390/ijms19010291
doi: 10.3390/ijms19010291
|
41 |
GAO J L, SUN P B, WANG X M, et al. Sphingomonas zei-caulis sp. nov., an endophytic bacterium isolated from maize root[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(9): 3755-3760. DOI: 10.1099/ijsem.0.001262
doi: 10.1099/ijsem.0.001262
|
42 |
KEEGSTRA J M, CARRARA F, STOCKER R. The ecological roles of bacterial chemotaxis[J]. Nature Reviews Microbiology, 2022, 20(8): 491-504. DOI: 10.1038/s41579-022-00709-w
doi: 10.1038/s41579-022-00709-w
|
43 |
王嘉文,吴刚,徐云敏.谷氨酰胺合成酶在植物氮同化及再利用中的研究进展[J].分子植物育种,2019,17(4):1373-1377. DOI:10.13271/j.mpb.017.001373 WANG J W, WU G, XU Y M. Research progress of gluta-mine synthetase in plant nitrogen assimilation and recycling[J]. Molecular Plant Breeding, 2019, 17(4): 1373-1377. (in Chinese with English abstract)
doi: 10.13271/j.mpb.017.001373
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|