Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 758-770    DOI: 10.3785/j.issn.1008-9209.2023.03.292
资源利用与环境保护     
土壤类型对超积累植物东南景天叶际微生物群落结构和功能的影响
姜悦(),罗继鹏,乔亚蓓,李雨航,张雨,周润惠,李廷强()
浙江大学环境与资源学院,污染环境修复与生态健康教育部重点实验室,浙江 杭州 310058
Effects of soil typeson phyllosphere microbial community structure and function of hyperaccumulator Sedum alfredii
Yue JIANG(),Jipeng LUO,Yabei QIAO,Yuhang LI,Yu ZHANG,Runhui ZHOU,Tingqiang LI()
Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(3635 KB)   HTML
摘要:

叶际微生物在促进植物生长、抵御生物和非生物胁迫中发挥重要作用。然而,目前对重金属超积累植物叶际微生物的群落结构和功能缺乏了解。本试验采用16S rRNA基因高通量测序,研究了红壤、紫色土、水稻土、青紫泥4种不同土壤类型对镉超积累生态型和非超积累生态型东南景天叶际微生物群落结构和功能的影响。结果表明:在青紫泥和水稻土中,东南景天叶际放线菌门和诺卡菌属微生物的相对丰度更高,而在红壤和紫色土中,东南景天叶际变形菌门、拟杆菌门、绿弯菌门微生物的相对丰度更高;在不同土壤中,超积累生态型东南景天叶际诺卡菌属、鞘氨醇单胞菌属和甲基杆菌属微生物的相对丰度均高于非超积累生态型。土壤类型和生态型显著影响东南景天叶际微生物的群落结构,且土壤类型的影响更大,解释了28.17%的群落变异。与青紫泥和紫色土相比,水稻土和红壤中叶际微生物的共存网络更为复杂;而所有土壤中超积累生态型叶际微生物的共存网络比非超积累生态型更为复杂。基于PICRUSt2软件的功能预测结果表明,土壤类型显著影响东南景天叶际微生物的谷胱甘肽代谢、D-谷氨酰胺和谷氨酸代谢、细菌趋化等通路的相对丰度(p<0.01),而在不同土壤中,超积累生态型叶际微生物的碳水化合物代谢(柠檬酸循环)、氨基酸代谢(谷胱甘肽代谢、苯丙氨酸代谢、半胱氨酸和甲硫氨酸代谢)通路的相对丰度显著高于非超积累生态型(p<0.01)。综上所述,土壤类型显著影响东南景天叶际微生物的群落结构和功能,且超积累生态型叶际微生物比非超积累生态型具有更强的镉胁迫抵抗能力。

关键词: 叶际微生物超积累植物共存网络植物修复    
Abstract:

Phyllosphere microorganisms play important roles in promoting plant growth and resisting biotic and abiotic stresses. Nevertheless, there is a lack of knowledge on the phyllosphere microbial community structure and function of environment-specific plants, especially heavy metal-hyperaccumulating plants. In the present study, 16S rRNA high-throughput sequencing technology was used to explore the phyllosphere microbial community structure and function of the cadmium (Cd) hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown in red soil, purple soil, paddy soil and purplish clayey soil. The results showed that in purplish clayey soil and paddy soil, the relative abundances of Actinobacteria and Nocardia microorganisms in the phyllosphere of S. alfredii were higher than those in red soil and purple soil, whereas the relative abundances of Proteobacteria, Bacteroidetes and Chloroflexi microorganisms in the phyllosphere of S. alfredii grown in red soil and purple soil were higher than those in purplish clayey soil and paddy soil. In different soils, the relative abundances of Nocardia, Sphingomonas and Methylobacterium microorganisms in HE were higher than those in NHE. The soil type and ecotype significantly affected the phyllosphere microbial community structure of S. alfredii, and the soil type was the greatest contributor, accounting for 28.17% of the variation. The co-occurrence networks of the phyllosphere microorganisms of S. alfredii grown in paddy soil and red soil were more complex than those in purplish clayey soil and purple soil. Moreover, compared with those in NHE, the co-occurrence networks in HE were more complex in all the soils. PICRUSt2-based functional prediction analysis showed that the soil type significantly affected the relative abundances of glutathione metabolism, D-glutamine and glutamate metabolism, and bacterial chemotaxis pathways in the phyllosphere microorganisms of S. alfredii (p<0.01), whereas in different soils, the relative abundances of carbohydrate metabolism (citrate cycle) and amino acid metabolism (glutathione metabolism, phenylalanine metabolism, cysteine and methionine metabolism) pathways in the phyllosphere microorganisms of HE were significantly higher than those in NHE (p<0.01). Taken together, the soil type significantly affects the structure and function of the phyllosphere microbial community of S. alfredii, and the phyllosphere microorganisms in HE are more resistant to Cd stress than those in NHE.

Key words: phyllosphere microorganisms    hyperaccumulators    co-occurrence network    cadmium    phytoremediation
收稿日期: 2023-03-29 出版日期: 2024-10-31
CLC:  Q938.1  
基金资助: 国家自然科学基金项目(41977107);科技部中国-斯洛伐克2022—2023年度交流项目
通讯作者: 李廷强     E-mail: 22014121@zju.edu.cn;litq@zju.edu.cn
作者简介: 姜悦(https://orcid.org/0000-0003-4269-9932),E-mail:22014121@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姜悦
罗继鹏
乔亚蓓
李雨航
张雨
周润惠
李廷强

引用本文:

姜悦,罗继鹏,乔亚蓓,李雨航,张雨,周润惠,李廷强. 土壤类型对超积累植物东南景天叶际微生物群落结构和功能的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 758-770.

Yue JIANG,Jipeng LUO,Yabei QIAO,Yuhang LI,Yu ZHANG,Runhui ZHOU,Tingqiang LI. Effects of soil typeson phyllosphere microbial community structure and function of hyperaccumulator Sedum alfredii. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 758-770.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.03.292        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/758

土壤类型

Soil type

pH值

pH value

OM/(g/kg)TN/(g/kg)AHN/(mg/kg)AP/(mg/kg)AK/(mg/kg)

总镉

Total Cd/(mg/kg)

水稻土

Paddy soil (PY)

6.5325.731.81134.1417.8987.622.50

红壤

Red soil (R)

5.1022.151.80102.0820.58105.352.48

青紫泥

Purplish clayey soil (PC)

6.7227.391.89107.1713.42102.332.60

紫色土

Purple soil (PE)

5.8124.781.7498.7913.80145.082.56
表1  供试土壤的基本理化性质

部位

Part

超积累生态型东南景天 HE S. alfredii非超积累生态型东南景天 NHE S. alfredii
PYRPCPEPYRPCPE
叶 Leaf1.61±0.03a1.35±0.08d1.42±0.06c1.52±0.04b0.76±0.03b0.55±0.06d0.58±0.02c0.80±0.04a
茎 Stem0.68±0.01b0.41±0.02d0.53±0.02c0.70±0.01a0.33±0.01a0.28±0.01c0.30±0.02b0.30±0.01b
地上部 Shoot2.29±0.08a1.76±0.10c1.95±0.05b2.22±0.03a1.09±0.03a0.83±0.10b0.88±0.03b1.10±0.03a
表2  不同土壤中2种生态型东南景天地上部生物量 (g/pot)

东南景天

S. alfredii

w(Cd)/(mg/kg)
PYRPCPE
HE379.4±33.2c533.1±34.2a366.3±23.0d440.7±34.1b
NHE7.7±0.6b25.7±5.0a5.4±0.4c8.8±0.3b
表3  不同土壤中2种生态型东南景天叶片镉含量
图1  不同土壤中东南景天叶际微生物在门水平(A)和属水平(B)的群落组成

微生物类别

Microbial taxa

Wilcoxon秩和检验Wilcoxon rank sum testKruskal-Wallis检验Kruskal-Wallis test
不同生态型间 Between ecotypes不同土壤类型间 Among soil types
Wpχ2p

门水平

Phylum level

变形菌门1640.1810.98<0.05
放线菌门1060.4213.41<0.01
厚壁菌门1070.4415.90<0.001
绿弯菌门1530.3611.78<0.01
拟杆菌门1250.9210.12<0.05
芽单胞菌门1000.303.110.37

属水平

Genus level

诺卡菌属1580.2722.91<0.001
链霉菌属49<0.0116.50<0.01
红球菌属1710.116.170.1
分枝杆菌属1230.869.32<0.05
甲基杆菌属231<0.0012.230.52
鞘氨醇单胞菌属206<0.011.780.61
表4  不同土壤中2种生态型东南景天叶际微生物相对丰度的统计比较
图2  东南景天叶际微生物的群落结构分布(A)及各因素的差异贡献度(B)***表示在P<0.001水平极显著相关。
图3  不同土壤中超积累生态型东南景天(A)和非超积累生态型东南景天(B)叶际特异微生物
图4  不同土壤中超积累生态型东南景天(A)和非超积累生态型东南景天(B)叶际微生物的共存网络特征红色边代表正相关关系,绿色边代表负相关关系。
图5  不同土壤中2种生态型东南景天叶际微生物群落的功能预测

参量

Parameter

平方和

Sum of squares

均值平方

Mean square

R2

p

p-value

土壤类型 Soil type0.0190.0060.70.001
生态型 Ecotype0.0050.0050.20.001
土壤类型×生态型 Soil type×Ecotype0.0020.0070.080.001
表5  土壤类型和生态型对东南景天叶际微生物群落功能的影响

微生物群落功能

Microbial community function

Wilcoxon秩和检验

Wilcoxon rank sum test

Kruskal-Wallis检验

Kruskal-Wallis test

生态型间

Between ecotypes

土壤类型间

Among soil types

Wpχ2p
柠檬酸循环 Citrate cycle56<0.017.410.06
D-谷氨酰胺和谷氨酸代谢 D-glutamine and glutamate metabolism440.2313.06<0.01
ABC转运蛋白 ABC transporters52<0.058.17<0.05
细菌趋化 Bacterial chemotaxis440.2312.70<0.01
鞭毛组装 Flagellar assembly440.239.06<0.05
果糖和甘露糖代谢 Fructose and mannose metabolism54<0.057.050.08
半胱氨酸和甲硫氨酸代谢 Cysteine and methionine metabolism56<0.016.000.11
谷胱甘肽代谢 Glutathione metabolism56<0.0111.59<0.01
苯丙氨酸代谢 Phenylalanine metabolism64<0.010.700.87
氧化磷酸化 Oxidative phosphorylation52<0.059.88<0.05
表6  不同土壤中2种生态型东南景天叶际微生物群落功能的统计比较
1 VORHOLT J A. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology, 2012, 10(12): 828-840. DOI: 10.1038/nrmicro2910
doi: 10.1038/nrmicro2910
2 RASTOGI G, SBODIO A, TECH J J, et al. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce[J]. The ISME Journal, 2012, 6(10): 1812-1822. DOI: 10.1038/ismej.2012.32
doi: 10.1038/ismej.2012.32
3 JACKSON C R, DENNEY W C. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern magnolia (Magnolia grandiflora)[J]. Microbial Ecology, 2011, 61: 113-122. DOI: 10.1007/s00248-010-9742-2
doi: 10.1007/s00248-010-9742-2
4 SINGH P, SANTONI S, WEBER A, et al. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures[J]. Scientific Reports, 2019, 9(1): 14294. DOI: 10.1038/s41598-019-50839-0
doi: 10.1038/s41598-019-50839-0
5 周凌云,向芬,刘红艳,等.茶白星病不同病情等级下叶际细菌群落多样性与功能预测[J].茶叶通讯,2019,46(1):24-31. DOI:10.3969/j.issn.1009-525X.2019.01.005
ZHOU L Y, XIANG F, LIU H Y, et al. Function prediction and phyllosphere bacterial diversities on leaves with different severities of tea white scab disease[J]. Journal of Tea Commu-nication, 2019, 46(1): 24-31. (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-525X.2019.01.005
6 高爽.柑橘叶表细菌种群结构与溃疡病的关联研究[D].长沙:湖南农业大学,2016.
GAO S. Associated diversity of phyllosphere bacterium with canker disease[D]. Changsha: Hunan Agricultural University, 2016. (in Chinese with English abstract)
7 ZHU Y G, XIONG C, WEI Z, et al. Impacts of global change on the phyllosphere microbiome[J]. New Phytologist, 2022, 234(6): 1977-1986. DOI: 10.1111/nph.17928
doi: 10.1111/nph.17928
8 WAGNER M R, LUNDBERG D S, DEL RIO T G, et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant[J]. Nature Communications, 2016, 7: 12151. DOI: 10.1038/ncomms12151
doi: 10.1038/ncomms12151
9 BECHTOLD E K, RYAN S, MOUGHAN S E, et al. Phyllo-sphere community assembly and response to drought stress on common tropical and temperate forage grasses[J]. Applied and Environmental Microbiology, 2021, 87(17): e00895-21. DOI: 10.1128/AEM.00895-21
doi: 10.1128/AEM.00895-21
10 LAFOREST-LAPOINTE I, MESSIER C, KEMBEL S W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure[J]. Microbiome, 2016, 4(1): 27. DOI: 10.1186/s40168-016-0174-1
doi: 10.1186/s40168-016-0174-1
11 周慧娜,张涛,徐自恒,等.山桐子叶际微生物群落多样性、结构及功能预测分析[J].经济林研究,2022,40(4):163-172. DOI:10.14067/j.cnki.1003-8981.2022.04.018
ZHOU H N, ZHANG T, XU Z H, et al. Diversity, structure and function prediction of phyllospheric microorganism community in Idesia polycarpa [J]. Non-wood Forest Research, 2022, 40(4): 163-172. (in Chinese with English abstract)
doi: 10.14067/j.cnki.1003-8981.2022.04.018
12 许国琪,刘怡萱,曹鹏熙,等.青藏高原冰川棘豆(Oxytropis glacialis)内生菌核心微生物组的界定及其互作网络分析[J].微生物学通报,2020,47(9):2746-2758. DOI:10.13344/j.microbiol.china.200307
XU G Q, LIU Y X, CAO P X, et al. Core microflora and endophytic interaction network of Oxytropis glacialis in Qinghai-Tibet Plateau[J]. Microbiology China, 2020, 47(9): 2746-2758. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.200307
13 罗继鹏,陶琦,吴可人,等.超积累植物内生微生物群落组成特征及其功能研究进展[J].浙江大学学报(农业与生命科学版),2018,44(5):515-529. DOI:10.3785/j.issn.1008-9209.2017.09.208
LUO J P, TAO Q, WU K R, et al. Research progress in composition and function of hyperaccumulator-associated endogenous microorganism community[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 515-529. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2017.09.208
14 SMITH R A, COUCHE G A. The phylloplane as a source of Bacillus thuringiensis variants[J]. Applied and Environmental Microbiology, 1991, 57(1): 311-315. DOI: 10.1128/aem.57.1.311-315.1991
doi: 10.1128/aem.57.1.311-315.1991
15 D’ALESSANDRO M, ERB M, TON J, et al. Volatiles pro-duced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions[J]. Plant, Cell & Environment, 2014, 37(4): 813-826. DOI: 10.1111/pce.12220
doi: 10.1111/pce.12220
16 MATSUMOTO H, FAN X Y, WANG Y, et al. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants, 2021, 7(1): 60-72. DOI: 10.1038/s41477-020-00826-5
doi: 10.1038/s41477-020-00826-5
17 KOENIG R L, MORRIS R O, POLACCO J C. tRNA is the source of low-level trans-zeatin production in Methylobac-terium spp.[J]. Journal of Bacteriology, 2002, 184(7): 1832-1842. DOI: 10.1128/JB.184.7.1832-1842.2002
doi: 10.1128/JB.184.7.1832-1842.2002
18 ARUN K D, SABARINATHAN K G, GOMATHY M, et al. Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria[J]. Journal of Basic Microbiology, 2020, 60(9): 768-786. DOI: 10.1002/jobm.202000011
doi: 10.1002/jobm.202000011
19 ETESAMI H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects[J]. Ecotoxicology and Envi-ronmental Safety, 2018, 147: 175-191. DOI: 10.1016/j.ecoenv.2017.08.032
doi: 10.1016/j.ecoenv.2017.08.032
20 BECKER S H, DARWIN K H. Bacterial proteasomes: mecha-nistic and functional insights[J]. Microbiology and Molecular Biology Reviews, 2017, 81(1): e00036-16. DOI: 10.1128/MMBR.00036-16
doi: 10.1128/MMBR.00036-16
21 YANG X E, LONG X X, YE H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259: 181-189. DOI: 10.1023/B:PLSO.0000020956.24027.f2
doi: 10.1023/B:PLSO.0000020956.24027.f2
22 LUO J P, TAO Q, JUPA R, et al. Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii [J]. Environmental Science & Technology, 2019, 53(12): 6954-6963. DOI: 10.1021/acs.est.9b01093
doi: 10.1021/acs.est.9b01093
23 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
24 LIU B W, JU Y W, XIA C, et al. The effect of Epichloë endophyte on phyllosphere microbes and leaf metabolites in Achnatherum inebrians [J]. iScience, 2022, 25(4): 104144. DOI: 10.1016/j.isci.2022.104144
doi: 10.1016/j.isci.2022.104144
25 AYDOGAN E L, BUDICH O, HARDT M, et al. Global warming shifts the composition of the abundant bacterial phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the grassland phyllo-sphere of a long-term warming field experiment[J]. FEMS Microbiology Ecology, 2020, 96(8): fiaa087. DOI: 10.1093/femsec/fiaa087
doi: 10.1093/femsec/fiaa087
26 XU P, FAN X Y, MAO Y X, et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens[J]. Journal of Advanced Research, 2022, 39: 49-60. DOI: 10.1016/j.jare.2021.10.003
doi: 10.1016/j.jare.2021.10.003
27 李聪聪,朱秉坚,徐琳,等.高寒草甸优势植物叶内、根内与土壤原核微生物群落的分异[J].生态学报,2020,40(14):4942-4953. DOI:10.5846/stxb201908221746
LI C C, ZHU B J, XU L, et al. Differentiations of prokaryotic communities in leaf and root endosphere of dominant plants and bulk soils in alpine meadows[J]. Acta Ecologica Sinica, 2020, 40(14): 4942-4953. (in Chinese with English abstract)
doi: 10.5846/stxb201908221746
28 YANG D S, ZHANG J, LI M X, et al. Metabolomics analysis reveals the salt-tolerant mechanism in Glycine soja [J]. Journal of Plant Growth Regulation, 2017, 36(2): 460-471. DOI: 10.1007/s00344-016-9654-6
doi: 10.1007/s00344-016-9654-6
29 MASSALHA H, KORENBLUM E, THOLL D, et al. Small molecules below-ground: the role of specialized metabolites in the rhizosphere[J]. The Plant Journal, 2017, 90(4): 788-807. DOI: 10.1111/tpj.13543
doi: 10.1111/tpj.13543
30 DURÁN P, THIERGART T, GARRIDO-OTER R, et al. Micro-bial interkingdom interactions in roots promote Arabidopsis survival[J]. Cell, 2018, 175(4): 973-983. DOI: 10.1016/j.cell.2018.10.020
doi: 10.1016/j.cell.2018.10.020
31 QIAN X, CHEN L, GUO X M, et al. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient[J]. PeerJ, 2018, 6: e5767. DOI: 10.7717/peerj.5767
doi: 10.7717/peerj.5767
32 GAO C, XU L, MONTOYA L, et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities[J]. Nature Communications, 2022, 13(1): 3867. DOI: 10.1038/s41467-022-31343-y
doi: 10.1038/s41467-022-31343-y
33 LI P D, ZHU Z R, ZHANG Y Z, et al. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome, 2022, 10(1): 56. DOI: 10.1186/s40168-022-01234-x
doi: 10.1186/s40168-022-01234-x
34 CHU C Q, FAN M Y, SONG C Y, et al. Unveiling endophytic bacterial community structures of different rice cultivars grown in a cadmium-contaminated paddy field[J]. Frontiers in Microbiology, 2021, 12: 756327. DOI: 10.3389/fmicb.2021.756327
doi: 10.3389/fmicb.2021.756327
35 HOU D D, WANG K, LIU T, et al. Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant Sedum alfredii [J]. Environmental Science & Technology, 2017, 51(10): 5675-5684. DOI: 10.1021/acs.est.6b06531
doi: 10.1021/acs.est.6b06531
36 YU X A, ZHOU T, ZHAO J, et al. Remediation of a metal-contaminated soil by chemical washing and repeated phyto-extraction: a field experiment[J]. International Journal of Phytoremediation, 2021, 23(6): 577-584. DOI: 10.1080/15226514.2020.1840509
doi: 10.1080/15226514.2020.1840509
37 ZHANG Z W, DENG Z L, TAO Q, et al. Salicylate and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea [J]. Chemosphere, 2022, 292: 133466. DOI: 10.1016/j.chemosphere.2021.133466
doi: 10.1016/j.chemosphere.2021.133466
38 COBBETT C, GOLDSBROUGH P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology, 2002, 53: 159-182. DOI: 10.1146/annurev.arplant.53.100301.135154
doi: 10.1146/annurev.arplant.53.100301.135154
39 MUEHE E M, WEIGOLD P, ADAKTYLOU I J, et al. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri [J]. Applied and Environmental Microbiology, 2015, 81(6): 2173-2181. DOI: 10.1128/AEM.03359-14
doi: 10.1128/AEM.03359-14
40 SÁNCHEZ-LÓPEZ A S, PINTELON I, STEVENS V, et al. Seed endophyte microbiome of Crotalaria pumila unpeeled: identification of plant-beneficial methylobacteria[J]. Inter-national Journal of Molecular Sciences, 2018, 19(1): 291. DOI: 10.3390/ijms19010291
doi: 10.3390/ijms19010291
41 GAO J L, SUN P B, WANG X M, et al. Sphingomonas zei-caulis sp. nov., an endophytic bacterium isolated from maize root[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(9): 3755-3760. DOI: 10.1099/ijsem.0.001262
doi: 10.1099/ijsem.0.001262
42 KEEGSTRA J M, CARRARA F, STOCKER R. The ecological roles of bacterial chemotaxis[J]. Nature Reviews Microbiology, 2022, 20(8): 491-504. DOI: 10.1038/s41579-022-00709-w
doi: 10.1038/s41579-022-00709-w
43 王嘉文,吴刚,徐云敏.谷氨酰胺合成酶在植物氮同化及再利用中的研究进展[J].分子植物育种,2019,17(4):1373-1377. DOI:10.13271/j.mpb.017.001373
WANG J W, WU G, XU Y M. Research progress of gluta-mine synthetase in plant nitrogen assimilation and recycling[J]. Molecular Plant Breeding, 2019, 17(4): 1373-1377. (in Chinese with English abstract)
doi: 10.13271/j.mpb.017.001373
[1] 陈思民,卢新哲,黄春雷,施加春,徐建明. 强酸性轻度镉污染稻田安全利用技术模式探究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 853-862.
[2] 戴艳娇,贺爱国,胡志鑫,柏连阳,赵硕,聂阳阳,陈锦. 植物修复用伴矿景天种苗质量分级标准研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 473-482.
[3] 张继宁,张鲜鲜,孙会峰,王从,周胜. 不同缓释肥对蔬菜地氮素流失和重金属镉迁移的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 619-627.
[4] 邹文娴,周于宁,顾思婷,黄涂海,支裕优,孟龙,施加春,陈謇,徐建明. 关键时期淹水对不同土壤上水稻镉累积和转运的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 74-88.
[5] 陈芬,余高,吴涵茜,侯建伟,赵成刚. 中药渣生物有机肥对镉-汞复合污染土壤的钝化效果[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 737-747.
[6] 张爽,章明奎. 浙西石灰岩发育土壤镉的积累及其成土过程中镉的淋失特征[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 591-598.
[7] 孟龙,黄涂海,陈謇,钟福林,施加春,徐建明. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 263-271.
[8] 罗继鹏, 陶琦, 吴可人, 李廷强. 超积累植物内生微生物群落组成特征及其功能研究进展 [J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 515-529.
[9] 柳梦琪, 张广路, 郭长权, 杨婷宇, 米玉玲. 牛磺酸缓解镉诱导的鸡胚睾丸细胞氧化损伤的核转录因子E2 相关因子2/血红素加氧酶-1途径[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 619-628.
[10] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, 张欣, 黄雨晴, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider. 锌和硅对2 种水稻基因型的镉毒害及矿质元素转移的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 294-310.
[11] 何小林,关美艳,范士凯,何虎,金崇伟. 矿质营养元素阻控植物镉积累:从机制到应用[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 747-756.
[12] 代邹,余华清,郭长春,马均,李娜,杨志远,徐徽,孙永健. 外源Na2SeO3和Na2SiO3对不同水稻拔节期镉吸收和积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 441-450.
[13] 周慧芳,王京文,孙吉林,李丹,张奇春. 耐镉菌联合植物吸收对土壤重金属镉污染的修复[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 341-349.
[14] 刘媛,王妮娅,张雯,余佳,魏虹. 镉胁迫对秋华柳植物螯合肽含量的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 298-306.
[15] 罗良旭,高素萍,王成聪,雷霆,闻金燕,罗雁. 紫萼玉簪种子和幼苗对酸雨与镉复合污染的生理生态响应[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 192-202.