Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (6): 737-747    DOI: 10.3785/j.issn.1008-9209.2020.07.141
资源利用与环境保护     
中药渣生物有机肥对镉-汞复合污染土壤的钝化效果
陈芬1,2(),余高1,2(),吴涵茜1,侯建伟1,赵成刚1
1.铜仁学院农林工程与规划学院,贵州 铜仁 554300
2.农业农村部产地环境污染防控重点实验室/天津市农业环境与农产品安全重点实验室,天津 300191
Effects of bio-organic fertilizer made from Chinese traditional herb residues on heavy metal passivation in Cd and Hg compound-contaminated soils
Fen CHEN1,2(),Gao YU1,2(),Hanqian WU1,Jianwei HOU1,Chenggang ZHAO1
1.College of Agroforestry Engineering and Planning, Tongren University, Tongren 554300, Guizhou, China
2.Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Safe-Product, Tianjin 300191, China
 全文: PDF(1573 KB)   HTML
摘要:

为探究中药渣生物有机肥对农田土壤重金属的钝化效果及影响机制,选取不同镉(Cd)污染水平(高、中、低)自然农田土壤为研究对象,通过土培试验,分析中药渣生物有机肥不同施用比例[0(CK)、1.5%、3.0%和6.0%]对土壤有机质、pH、阳离子交换量(cation exchange capacity, CEC)以及Cd和汞(Hg)的形态变化、钝化率(immobilization efficiency, IE)、迁移率指数(mobility index, MI)的影响,并通过土壤理化性质与重金属形态的相关性分析,初步探讨其钝化机制。结果表明:施用中药渣生物有机肥可提高土壤有机质含量、pH和CEC,且随施用比例的增加而显著提高。施用中药渣生物有机肥可降低土壤中的可交换态和碳酸盐结合态Cd、Hg含量,增加有机结合态和残渣态Cd、Hg含量;且可交换态和碳酸盐结合态含量的降幅及有机结合态和残渣态含量的增幅均以6.0%处理最高,3.0%处理次之,1.5%处理最低。施用中药渣生物有机肥可降低土壤Cd、Hg的迁移率,增加Cd、Hg的钝化率;且迁移率的增幅和钝化率的降幅均以6.0%处理最高,3.0%处理次之,1.5%处理最低。相关性分析结果表明,土壤有机质含量、pH和CEC与可交换态Cd、Hg含量均呈显著负相关(P<0.05),与有机结合态Cd含量呈显著或极显著正相关 (P<0.05或P<0.01),土壤有机质含量和CEC与有机结合态Hg含量呈显著正相关(P<0.05)。总体上,施用中药渣生物有机肥可有效改善土壤理化性质,降低土壤重金属Cd、Hg的生物有效性,从而达到修复土壤的目的。

关键词: 中药渣生物有机肥镉-汞复合污染土壤钝化修复    
Abstract:

This study aimed to understand the passivation effects and mechanisms of bio-organic fertilizer made from Chinese traditional herb residues (BOFCTHR) on heavy metals in farmland soils. The soils with three levels of Cd-contamination were collected from Longli County (high pollution), Wanshan District, Tongren City (medium pollution), and Danzhai County (low pollution) in Guizhou Province. A soil incubation experiment was conducted to study the effect of BOFCTHR on soil organic matter, pH, cation exchange capacity (CEC), the morphological transformation of Cd and Hg, immobilization efficiency (IE) and mobility index (MI) under the addition of 0 (CK), 1.5%, 3.0% and 6.0% BOFCTHR, respectively; and the correlation between the physiochemical properties of soils and the forms of heavy metals was analyzed. The results showed that the application of BOFCTHR increased significantly soil organic matter content, pH, and CEC in a dose-dependent manner. The application of BOFCTHR decreased exchangeable and carbonate-bound form contents of Cd and Hg, increased organic-bound and residual form contents of Cd and Hg; and the reduce amplitude of exchangeable and carbonate-bound form contents of Cd and Hg, and the increment amplitude of organic-bound and residual form contents of Cd and Hg followed the order: 6.0% BOFCTHR>3.0% BOFCTHR>1.5% BOFCTHR. The application of BOFCTHR decreased MI of Cd and Hg, and increased IE of Cd and Hg; and the reduce amplitude of MI of Cd and Hg, and the increment amplitude of IE of Cd and Hg followed the order: 6.0% BOFCTHR>3.0% BOFCTHR>1.5% BOFCTHR. The correlation analysis showed that soil organic matter content, pH, and CEC were significant negative correlation with exchangeable form content of Cd and Hg (P<0.05), and significant or extremely significant positive correlation with organic-bound form content of Cd (P<0.05 or P<0.01); soil organic matter content and CEC were significant positive correlation with organic-bound form content of Hg (P<0.05). It is concluded that BOFCTHR may affect the passivation effect of heavy metals in the soil by changing the physiochemical properties.

Key words: bio-organic fertilizer made from Chinese traditional herb residues    Cd and Hg compound-contaminated soils    passivation remediation
收稿日期: 2020-07-14 出版日期: 2020-12-31
CLC:  X 53  
基金资助: 农业农村部产地环境污染防控重点实验室开放基金(19cdhj-5);贵州省教育厅自然科学基金(黔教合KY字〔2018〕349);铜仁学院农业生态创新研究团队项目(CXTD(2020-10);贵州省大学生创新创业训练计划(S202010665023)
通讯作者: 余高     E-mail: chenfen2018@126.com;httywwwyu1014@sina.com
作者简介: 陈芬(https://orcid.org/0000-0003-1358-9072),E-mail:chenfen2018@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈芬
余高
吴涵茜
侯建伟
赵成刚

引用本文:

陈芬,余高,吴涵茜,侯建伟,赵成刚. 中药渣生物有机肥对镉-汞复合污染土壤的钝化效果[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 737-747.

Fen CHEN,Gao YU,Hanqian WU,Jianwei HOU,Chenggang ZHAO. Effects of bio-organic fertilizer made from Chinese traditional herb residues on heavy metal passivation in Cd and Hg compound-contaminated soils. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 737-747.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.07.141        http://www.zjujournals.com/agr/CN/Y2020/V46/I6/737

Cd污染水平

Cd pollution

level

w(有机质)

Organic matter

content/(g/kg)

pH

阳离子交换量

CEC/(cmol(+)/kg)

w(全氮)

Total N content/

(g/kg)

w(有效磷)

Available P

content/(mg/kg)

w(速效钾)

Available K

content/(mg/kg)

w(Cd)/

(mg/kg)

w(Hg)/

(mg/kg)

高 High13.844.9211.331.1618.53141.924.990.31
中 Medium12.115.338.940.7816.75132.340.878.65
低 Low9.235.898.560.5813.14125.320.410.23
表1  供试土壤的理化性质
图1  中药渣生物有机肥不同施用比例下土壤中有机质含量、pH及CEC变化*和**分别表示在P<0.05和P<0.01水平显著和极显著相关。下标“1、2、3”分别表示高、中、低Cd污染土壤。
图2  不同Cd污染水平下中药渣生物有机肥对土壤重金属形态的影响
图3  中药渣生物有机肥不同施用比例下土壤中Cd、Hg的迁移率指数*表示在P<0.05水平显著相关。下标“1、2、3”分别表示高、中、低Cd污染土壤。
图4  中药渣生物有机肥对不同Cd污染水平下土壤Cd、Hg的钝化效果A1~A2.高Cd污染;B1~B2.中Cd污染;C1~C2.低Cd污染。*表示在P<0.05水平显著相关。下标“1、2、3、4”分别表示0(CK)、1.5%、3.0%、6.0% 4个中药渣生物有机肥施用比例。
图5  钝化后土壤Cd、Hg的钝化率

重金属

Heavy

metal

形态

Form

高Cd污染

High Cd pollution

中Cd污染

Medium Cd pollution

低Cd污染

Low Cd pollution

有机质

Organic matter

pHCEC

有机质

Organic matter

pHCEC

有机质

Organic matter

pHCEC
CdF1-0.975*-0.974*-0. 962*-0.968*-0.952*-0.958*-0.973*-0.986*-0.951*
F2-0.912-0.984*-0.892-0.842-0.947-0.935-0.887-0.976*-0.909
F30.9130.7600.9300.4980.7240.7310.6800.6410.759
F40.967*0.985*0.953*0.997**0.999**0.967*0.959*0.984*0.971*
F50.6920.8410.958*0.992**0.993**0.9260.8080.961*0.861
HgF1-0.967*-0.972*-0.954*-0.958*-0.967*-0.971*-0.963*-0.989*-0.985*
F2-0.805-0.937-0.773-0.914-0.951*-0.965*-0.875-0.989*-0.922
F3-0.901-0.946-0.884-0.737-0.798-0.884-0.882-0.981*-0.988
F40.986*0.8960.959*0.964*0.8330.983*0.956*0.980*0.987*
F50.8020.9500.8840.8720.9150.952*0.7740.952*0.838
表2  土壤有机质、pH和CEC与Cd、Hg各形态含量的相关系数
1 吴秋梅,刘刚,王慧峰,等.水铝钙石对不同镉污染农田重金属的钝化效果及机制.环境科学,2019,40(12):5540-5549. DOI:10.13227/j.hjkx.201906079
WU Q M, LIU G, WANG H F, et al. Hydrocalumite passivation effect and mechanism on heavy metals in different Cd-contaminated farmland soils. Environmental Science, 2019,40(12):5540-5549. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201906079
2 郭碧林,陈效民,景峰,等.施用生物有机肥对红壤水稻土中重金属及微生物量的影响.土壤通报,2019,50(4):952-957. DOI:10.19336/j.cnki.trtb.2019.04.27
GUO B L, CHEN X M, JING F, et al. Effects of application of bio-organic fertilizer on heavy metals and microbial biomass in a red paddy soil. Chinese Journal of Soil Science, 2019,50(4):952-957. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2019.04.27
3 吴先亮,黄先飞,全文选,等.黔西煤矿区周边土壤重金属形态特征、污染评价及富集植物筛选.水土保持通报,2018,38(5):313-321. DOI:10.13961/j.cnki.scbctb.2018.05.050
WU X L, HUANG X F, QUAN W X, et al. Chemical forms and risk assessment of heavy metals in soils and selected hypertolerant plants around a coal mining area in Western Guizhou Province. Bulletin of Soil and Water Conservation, 2018,38(5):313-321. (in Chinese with English abstract)
doi: 10.13961/j.cnki.scbctb.2018.05.050
4 贺超,王文全,侯俊玲.中药药渣生物有机肥的研究进展.中草药,2017,48(24):5286-5292. DOI:10.7501/j.issn.0253-2670.2017.24.035
HE C, WANG W Q, HOU J L. Research progress on bio-organic fertilizer from Chinese materia medica residues. Chinese Traditional and Herbal Drugs, 2017,48(24):5286-5292. (in Chinese with English abstract)
doi: 10.7501/j.issn.0253-2670.2017.24.035
5 张波,廖朝林,金茜,等.中药渣资源化利用研究.南方园艺,2016,27(2):36-38, 41.
ZHANG B, LIAO C L, JIN Q, et al. Research on resource utilization of herb residues. Southern Horticulture, 2016,27(2):36-38, 41. (in Chinese)
6 袁琪,李伟东,郑艳萍,等.中药渣的深加工及其资源化利用.生物加工过程,2019,17(2):171-176. DOI:10.3969/j.issn.1672-3678.2019.02.009
YUAN Q, LI W D, ZHENG Y P, et al. Valorization of Chinese medicine residue: a review. Chinese Journal of Bioprocess Engineering, 2019,17(2):171-176. (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-3678.2019.02.009
7 TIAN W, ZHANG Z H, HU X F, et al. Short-term changes in total heavy metal concentration and bacterial community composition after replicated and heavy application of pig manure-based compost in an organic vegetable production system. Biology & Fertility of Soils, 2015,51(5):593-603. DOI:10.1007/s00374-015-1005-4
doi: 10.1007/s00374-015-1005-4
8 鲁洪娟,周德林,叶文玲,等.生物有机肥在土壤改良和重金属污染修复中的研究进展.环境污染与防治,2019,41(11):1378-1383. DOI:10.13254/j.jare.2014.0198
LU H J, ZHOU D L, YE W L, et al. Advances in application of bio-organic fertilizer in soil improvement and remediation of heavy metals pollution. Environmental Pollution & Control, 2019,41(11):1378-1383. (in Chinese with English abstract)
doi: 10.13254/j.jare.2014.0198
9 SHAHEEN S M, BALBAA A A, KHATAB A M, et al. Compost and sulfur affect the mobilization and phyto-availability of Cd and Ni to sorghum and barnyard grass in a spiked fluvial soil. Environmental Geochemistry & Health, 2017,39(6):1305-1324. DOI:10.1007/s10653-017-9962-1
doi: 10.1007/s10653-017-9962-1
10 LIU K, Lü J L, HE W X, et al. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicology and Environmental Safety, 2015,113:207-213. DOI:10.1016/j.ecoenv.2014.12.005
doi: 10.1016/j.ecoenv.2014.12.005
11 WANG F Y, WANG L, SHI Z Y, et al. Effects of AM inoculation and organic amendment, alone or in combination, on growth, P nutrition, and heavy-metal uptake of tobacco in Pb-Cd-contaminated soil. Journal of Plant Growth Regulation, 2012,31(4):549-559. DOI:10.1007/s00344-012-9265-9
doi: 10.1007/s00344-012-9265-9
12 PARDO T, BERNAL M P, CLEMENTE R. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: effects on trace elements and nutrients solubility and leaching risk. Chemosphere, 2014,107(7):121-128. DOI:10.1016/j.chemosphere.2014.03.023
doi: 10.1016/j.chemosphere.2014.03.023
13 王贵彦,史秀捧,张建恒,等.TDR法、中子法、重量法测定土壤含水量的比较研究.河北农业大学学报,2000,23(3):23-26.
WANG G Y, SHI X P, ZHANG J H, et al. A study on the comparison of measuring soil water content with TDR, neutron probe and oven dry. Journal of Agricultural University of Hebei, 2000,23(3):23-26. (in Chinese with English abstract)
14 鲍士旦.土壤农化分析.北京:中国农业出版社,2007.
BAO S D. Soil Agro-Chemistrical Analysis. Beijing: China Agriculture Press, 2007. (in Chinese)
15 刘文拔,张琴,张崇玉.有机肥对土壤-小麦系统汞污染影响的研究.农业环境科学学报,2009,28(5):890-896.
LIU W B, ZHANG Q, ZHANG C Y. Effects of applying organic fertilizer and mercury added on Hg pollution in soils-winter wheat system. Journal of Agro-Environment Science, 2009,28(5):890-896. (in Chinese with English abstract)
16 TESSIER A, CAMPBELL P G C. Partitioning of trace metals in sediments: relationships with bioavailability. Hydrobiologia, 1987,149(1):43-52.
17 刘千钧,李想,周阳媚,等.针铁矿-富里酸复合材料对铅镉污染土壤的钝化修复性能.环境科学,2019,40(12):5623-5628. DOI:10.13227/j.hjkx.201906152
LIU Q J, LI X, ZHOU Y M, et al. Immobilization impact of goethite-fulvic acid composites on Pb-Cd contaminated soil. Environmental Science, 2019,40(12):5623-5628. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201906152
18 邢丹,王永平,任婧,等.贵州典型土壤中Cd形态分布及环境风险评价.江西农业大学学报,2015,37(4):743-748. DOI:10.13836/j.jjau.2015113
XING D, WANG Y P, REN J, et al. Cd speciation distribution and environmental risk assessment for typical Cd polluted soil in Guizhou Province. Acta Agriculturae Universitatis Jiangxiensis, 2015,37(4):743-748. (in Chinese with English abstract)
doi: 10.13836/j.jjau.2015113
19 赵庆圆,李小明,杨麒,等.磷酸盐、腐殖酸与粉煤灰联合钝化处理模拟铅镉污染土壤.环境科学,2018,39(1):389-398. DOI:10.13227/j.hjkx.201705273
ZHAO Q Y, LI X M, YANG Q, et al. Passivation of simulated Pb- and Cd-contaminated soil by applying combined treatment of phosphate, humic acid, and fly ash. Environmental Science, 2018,39(1):389-398. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201705273
20 李瑞龙,任晓冬.基于PEST模型的贵州矿业企业发展环境分析.化工矿物与加工,2014,43(10):48-51.
LI R L, REN X D. Analysis of development environment for mining enterprises in Guizhou based on PEST model. Industrial Minerals & Processing, 2014,43(10):48-51. (in Chinese with English abstract)
21 李阳,李心清,王兵,等.4种改良剂对酸性黄壤土壤酸度和肥力的影响.地球与环境,2016,44(6):683-690. DOI:10.14050/j.cnki.1672-9250.2016.06.013
LI Y, LEE X Q, WANG B, et al. Effects of four soil amendments on improving soil quality and acidity of yellow soils. Earth and Environment, 2016,44(6):683-690. (in Chinese with English abstract)
doi: 10.14050/j.cnki.1672-9250.2016.06.013
22 侯建伟,邢存芳,邓晓梅,等.不同秸秆生物炭对黄壤理化性质及综合肥力的影响.西北农林科技大学学报(自然科学版),2019,47(11):49-59. DOI:10.13207/j.cnki.jnwafu.2019.11.007
HOU J W, XING C F, DENG X M, et al. Effect of straw biochar on yellow soil physicochemical properties and comprehensive fertility. Journal of Northwest A & F University (Natural Science Edition), 2019,47(11):49-59. (in Chinese with English abstract)
doi: 10.13207/j.cnki.jnwafu.2019.11.007
23 于秀丽,赵明家.增施生物有机肥对盐碱土壤养分的影响.吉林农业大学学报,2013,35(1):50-54, 57.
YU X L, ZHAO M J. Effect of bio-organic fertilizer application on nutrients in saline-alkaline soil. Journal of Jilin Agricultural University, 2013,35(1):50-54, 57. (in Chinese with English abstract)
24 ZHAO S, LIU D Y, LING N, et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil. Biology & Fertility of Soils, 2014,50(5):765-774. DOI:10.1007/s00374-014-0898-7
doi: 10.1007/s00374-014-0898-7
25 WU Z H, CHEN Y Y, HAN Y R, et al. Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models. Science of the Total Environment, 2020,717:137212. DOI:10.1016/j.scitotenv.2020.137212
doi: 10.1016/j.scitotenv.2020.137212
26 臧小平,周兆禧,林兴娥,等.不同用量有机肥对杧果果实品质及土壤肥力的影响.中国土壤与肥料,2016(1):98-101. DOI:10.11838/sfsc.20160117
ZANG X P, ZHOU Z X, LIN X E, et al. Effects of different organic manure application rate on mango fruit quality and soil fertility. Soil and Fertilizer Sciences in China, 2016(1):98-101. (in Chinese with English abstract)
doi: 10.11838/sfsc.20160117
27 张龙辉,李源环,邓小华,等.施用石灰和绿肥及生物有机肥后的酸性土壤pH和理化性状动态变化.中国烟草学报,2019,25(3):60-66. DOI:10.16472/j.chinatomacco.2018.302
ZHANG L H, LI Y H, DENG X H, et al. Dynamic change of soil pH and physicochemical properties after application of lime, green manure and biological organic fertilizer. Acta Tabacaria Sinica, 2019,25(3):60-66. (in Chinese with English abstract)
doi: 10.16472/j.chinatomacco.2018.302
28 赵佳,杜宾,聂园军,等.施用生物有机肥对连作黄瓜生长及根际微环境的影响.中国瓜菜,2017,30(1):31-34.
ZHAO J, DU B, NIE Y J, et al. Effects of bio-organic fertilizer on continuous cropping cucumber growth and rhizosphere microenvironment. China Cucurbits and Vegetables, 2017,30(1):31-34. (in Chinese with English abstract)
29 温军,王晓丽,王彦龙.长江源区3种地形高寒草地土壤阳离子交换量和交换性盐基离子的分布特征及其机理探讨.生态环境学报,2019,28(3):488-497. DOI:10.16258/j.cnki.1674-5906.2019.03.008
WEN J, WANG X L, WANG Y L. Distribution characteristics and mechanism discussion of soil cation exchange capacity and exchangeable based cations of alpine grassland in the source region of Yangtze River. Ecology and Environmental Sciences, 2019,28(3):488-497. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2019.03.008
30 刘巍,陈效民,景峰,等.生物有机肥对土壤-水稻系统中Cd形态及迁移特征的影响.水土保持通报,2020,40(1):78-84. DOI:10.13961/j.cnki.stbctb.2020.01.012
LIU W, CHEN X M, JING F, et al. Effects of applying bioorganic fertilizer on chemical form and transport characteristics of Cd in soil-rice system. Bulletin of Soil and Water Conservation, 2020,40(1):78-84. (in Chinese with English abstract)
doi: 10.13961/j.cnki.stbctb.2020.01.012
31 罗春岩,张家玮,王雨阳,等.不同种类有机肥对土壤铅、铜形态转化的影响.中国土壤与肥料,2019(6):78-85. DOI:10.11838/sfsc.1673-6257.19020
LUO C Y, ZHANG J W, WANG Y Y, et al. Impact of different organic fertilizers on the form and transformation of lead and copper in soil. Soil and Fertilizer Sciences in China, 2019(6):78-85. (in Chinese with English abstract)
doi: 10.11838/sfsc.1673-6257.19020
32 刘秀珍,马志宏,赵兴杰.不同有机肥对镉污染土壤镉形态及小麦抗性的影响.水土保持学报,2014,28(3):243-247, 252. DOI:10.13870/j.cnki.stbcxb.2014.03.044
LIU X Z, MA Z H, ZHAO X J. Effect of different organic manure on cadmium form of soil and resistance of wheat in cadmium contaminated soil. Journal of Soil and Water Conservation, 2014,28(3):243-247, 252. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2014.03.044
33 周宇杰,赵文,罗春岩,等.有机肥对铅在土壤中形态分配的影响.环境化学,2018,37(3):534-543. DOI:10.7524/j.issn.0254-6108.2017070801
ZHOU Y J, ZHAO W, LUO C Y, et al. Effects of organic manure on Pb speciation in soil. Environmental Chemistry, 2018,37(3):534-543. (in Chinese with English abstract)
doi: 10.7524/j.issn.0254-6108.2017070801
34 郑顺安,王飞,李晓华,等.利用稳定同位素202Hg稀释技术判定不同来源有机肥施用对外源汞在土壤中形态分布的影响.环境科学学报,2013,33(11):3111-3117.
ZHENG S A, WANG F, LI X H, et al. Application of 202Hg dilution technique in assessing species distribution and potential bioavailability of exogenous mercury in different organic fertilizers applied soils. Acta Scientiae Circumstantiae, 2013,33(11):3111-3117. (in Chinese with English abstract)
35 路克国.生物有机肥的土壤学效应及其对红富士苹果根系吸收镉、铜的影响.山东,泰安:山东农业大学,2003.
LU K G. The effect of bio-fertilizer on soil and absorption to cadmium and copper of Fuji apple root. Tai’an, Shandong: Shandong Agricultural University, 2003. (in Chinese with English abstract)
[1] 邓美华,朱有为,段丽丽,沈菁,冯英. 农田土壤重金属污染“边生产边修复”综合防治技术模式解析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 135-150.
[2] 费徐峰,任周桥,楼昭涵,肖锐,吕晓男. 基于贝叶斯最大熵和辅助信息的土壤重金属含量空间预测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 452-459.
[3] 孟龙,黄涂海,陈謇,钟福林,施加春,徐建明. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 263-271.
[4] 王立亮,高春辉,吴一超,黄巧云,蔡鹏. 大肠杆菌表面感应机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 685-690.
[5] 谷成刚,相雷雷,任文杰,吴为,刘畅,方国东,王芳. 土壤中酞酸酯多界面迁移转化与效应研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 700-712.
[6] 薛南冬,刘寒冰,杨兵,苏献伟,王冬琦. 毒死蜱土壤环境行为研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 713-726.
[7] 孙扬,徐会娟,李晓晶,李永涛,赵丽霞. 二氯喹啉酸对农田生态系统的影响及其微生物降解研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 727-733.
[8] 何明江,沈浩然,查婷, 于雄胜,刘杏梅. 水稻土中痕量多环芳烃的分析测定方法[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 766-774.
[9] 张薇,施加春. 不同钝化剂与蚯蚓联合处理对猪粪堆肥中铜锌的钝化效果[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 775-786.
[10] 冯佳胤,朱敏,何艳. 土壤主要还原转化过程中微生物功能基因多样性研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 663-675.
[11] 王慧,胡金星,秦智慧,徐新华,沈超峰. 细菌对有机污染物的趋化性及其对降解的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 676-684.
[12] 刘晨,郭佳,赵敏,钟斌,郭华,侯淑贞,徐炜杰,杨芸,王任远,叶正钱,柳丹. 毛竹幼苗与伴矿景天间作对铜、镉、锌转运积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 615-622.
[13] 张栋,刘兴元,赵红挺. 生物质炭对土壤无机污染物迁移行为影响研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 451-459.
[14] 孟凡德,袁国栋,韦婧,毕冬雪,王海龙,刘兴元. 风化煤提取的胡敏酸对镉的吸附性能及其应用潜力[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 460-468.
[15] 兰天,楚颖超,张玲玲,赵文,潘运舟,张家玮,朱治强,吴蔚东. 椰衣和椰壳生物质炭的制备及其对溶液中Pb2+的吸附[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 469-477.