Please wait a minute...
浙江大学学报(农业与生命科学版)  2017, Vol. 43 Issue (6): 713-726    DOI: 10.3785/j.issn.1008-9209.2017.05.163
综述     
毒死蜱土壤环境行为研究进展
薛南冬*,刘寒冰,杨兵,苏献伟,王冬琦
中国环境科学研究院,环境基准与风险评估国家重点实验室,北京 100012
Progress on environmental behavior of chlorpyrifos in soils
XUE Nandong*, LIU Hanbing, YANG Bing, SU Xianwei, WANG Dongqi
(State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)
 全文: PDF(890 KB)   HTML (
摘要:

有机磷农药毒死蜱广泛使用带来的环境问题日益受到关注。本文针对毒死蜱在土壤中的环境行为,综述了毒死蜱在土壤中吸附解吸、降解及归趋研究进展,探讨了毒死蜱污染土壤环境中环境行为的主要影响因素。毒死蜱在土壤中的吸附解吸过程是与表面吸附位点相关的物理过程,降解过程是以细菌、真菌为主的生物降解过程。毒死蜱在土壤中迁移转化受土壤理化性质、种植作物类型等因素影响,而不同影响因子对毒死蜱在土壤中迁移转化的交互影响机制目前尚不明确。建立多因素吸附解吸模型,考虑土壤环境中复杂因素交互作用,对研究毒死蜱在土壤中的环境行为及其驱动机制具有重要意义。

关键词: 土壤毒死蜱降解吸附/解吸    
Abstract:

Chlorpyrifos (O, O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate, CPF) is one of the most widely used pesticides in agriculture, with broad-spectrum, high efficiency, and moderate toxicity. Unfortunately, only less than 1% of CPF applied can be directly utilized by plants, and up to 99% were released into the environment. Continuous and excessive use of CPF has already led to widespread environmental contamination. Recently, great concern has been raised regarding its residue problems and the risk to the ecological environment. In this paper, the fate and environmental behavior of CPF in soils were reviewed. Adsorption/desorption and degradation were two critically important courses on this issue. CPF adsorption/desorption in soils may be fitted by Freundlich model or linear model. The parameters of CPF adsorption in soils are greatly related to soil properties. Soil organic matter contents are the key parameter controlling CPF’s adsorption, as well as CPF’s desorption. However, adsorption process is also affected by other soil characteristics, such as pH and temperature. It is therefore generally assumed that the sorption mechanisms of CPF in soils should be dominated by the binding between CPF and the hydrophobic site on the surface of soil particles. The degradation of CPF in the natural environment is mainly controlled by biotic processes. Bacteria and fungi are the main microorganisms that can degrade CPF by co-metabolism or mineralization into 3,5,6-trichloro-2-pyridinol and dicethylthiophospshate. The degradation of the intermediate degradation product 3,5,6-trichloro-2-pyridinol is the limiting factor for the CPF degradation process. Indigenous microorganism is effective for the degradation of 3,5,6-trichloro-2-pyridinol, leading a good remediation of CPF contaminated site. The use of indigenous or genetically modified microorganisms and/or plants has enhanced the degradation for in- situ bioremediation of contaminated sites. In conclusion, it is necessary to establish an adsorption/desorption model to describe the complex relation between CPF and other factors in soils. Furthermore, a novel gene technology can be further studied to enhance the degradation of CPF by microorganism and/or plants in soils.

Key words: chlorpyrifos    degradation    soil    adsorption/desorption
收稿日期: 2017-05-16 出版日期: 2017-08-31
CLC:  X 53  
基金资助: 国家重点研发计划重点专项(2016YFD0800202,2017YFD0800700)
通讯作者: 薛南冬(http://orcid.org/0000-0001-7409-057X)     E-mail: xuend@craes.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王冬琦
刘寒冰
薛南冬
杨兵
苏献伟

引用本文:

薛南冬,刘寒冰,杨兵,苏献伟,王冬琦. 毒死蜱土壤环境行为研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 713-726.

XUE Nandong, LIU Hanbing, YANG Bing, SU Xianwei, WANG Dongqi. Progress on environmental behavior of chlorpyrifos in soils. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 713-726.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2017.05.163        http://www.zjujournals.com/agr/CN/Y2017/V43/I6/713

[1] 李丹,梁新强,吴嘉平. 水库型饮用水源地水环境模拟与预测[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 75-88.
[2] 李伟成,杨慧敏,高贵宾,温星,盛海燕. 覆盖对中小径级毛竹林地土壤细菌群落的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 49-58.
[3] 童心,胡柏杨,陈兴财,张雪莲,赵永志,谷成刚,李艳霞. 类固醇雌激素的环境暴露及其迁移转化[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 734-746.
[4] 谷成刚,相雷雷,任文杰,吴为,刘畅,方国东,王芳. 土壤中酞酸酯多界面迁移转化与效应研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 700-712.
[5] 孙扬,徐会娟,李晓晶,李永涛,赵丽霞. 二氯喹啉酸对农田生态系统的影响及其微生物降解研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 727-733.
[6] 王慧,胡金星,秦智慧,徐新华,沈超峰. 细菌对有机污染物的趋化性及其对降解的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 676-684.
[7] 刘晨,郭佳,赵敏,钟斌,郭华,侯淑贞,徐炜杰,杨芸,王任远,叶正钱,柳丹. 毛竹幼苗与伴矿景天间作对铜、镉、锌转运积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 615-622.
[8] 李戌清,张雅,田忠玲,吴根良. 茄子连作与轮作土壤养分、酶活性及微生物群落结构差异分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 561-569.
[9] 李刚,都林娜,许方程,王阳,泮琇. 肠杆菌CV-b脱色孔雀石绿的特性及机制[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 493-501.
[10] 李晴晴,鲁珊珊,张红,杨艳,肖家欣. 乌饭树和蓝莓对不同土壤pH值的生理反应[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 469-475.
[11] 周慧芳,王京文,孙吉林,李丹,张奇春. 耐镉菌联合植物吸收对土壤重金属镉污染的修复[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 341-349.
[12] 王丽丽, 国巍, 付春娜, 燕红. 可降解苯酚的产电芽孢杆菌WL027的分离筛选及其产电机制初探[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 654-664.
[13] 孔樟良. 浙西北茶园土壤固碳能力及其不同形态有机碳的积累特点[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 209-219.
[14] 卜晓燕, 米文宝, 许浩, 张学艺, 米楠, 宋永永. 宁夏平原不同类型湿地土壤碳氮磷含量及其生态化学计量学特征[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 107-118.
[15] 万年鑫, 郑顺林, 周少猛, 张琴, 彭彬, 袁继超. 薯玉轮作对马铃薯根区土壤养分及酶活效应分析[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 74-80.