Please wait a minute...
浙江大学学报(农业与生命科学版)  2017, Vol. 43 Issue (6): 685-690    DOI: 10.3785/j.issn.1008-9209.2017.07.261
综述     
大肠杆菌表面感应机制研究进展
王立亮,高春辉,吴一超,黄巧云,蔡鹏*
华中农业大学资源与环境学院,农业微生物学国家重点实验室,武汉 430070
Research progress on mechanism of surface sensing in Escherichia coli
WANG Liliang, GAO Chunhui, WU Yichao, HUANG Qiaoyun, CAI Peng*
(State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)
 全文: PDF(832 KB)   HTML (
摘要:

大肠杆菌是人和动物胃肠道的主要兼性厌氧菌群,既能在宿主体内生存,也能吸附在环境中的固体介质表面形成生物膜而得以存活和传播。吸附是生物膜形成的关键,它能改变细胞运动性和代谢等相关基因的表达,进而影响细胞的性质和行为。细菌对表面的“感知”以及初始吸附后细胞的“响应”过程统称为“表面感应”。对细菌表面感应机制的研究有助于我们加深对微生物尤其是病原菌在土壤环境中的存活和迁移,以及土壤生物膜形成过程的理解。本文结合多种微生物表面感应的研究进展,阐述了表面感应的概念,重点关注了近期有关大肠杆菌表面感应的研究,并对未来工作进行了展望。

关键词: 表面感应吸附大肠杆菌生物膜    
Abstract:

Escherichia coli is a kind of facultative anaerobic bacteria which is commonly found in the host gastrointestinal tract and natural environments. The presence of pathogenic E. coli in manure and sewage is a serious threat to the health of humans and animals, which can spread to consuming agricultural products and enter the food industry chain. In the above processes, these pathogens can survive and spread in the form of surface-associated biofilm. Initial attachment is the first step of the biofilm development. When cells attached on the surface, physiological properties of bacteria are altered. It can reshape cell morphology and behavior by changing the expressions of different genes, such as, those related to cell motility and metabolism. Therefore, the attachment on various biotic (plant roots or leaves) and abiotic (soil particles) surfaces is the key step for bacterial survival in different environments. The way that cells sense a surface and respond upon surface attachment is referred as“surface sensing”, which consists of a great many behaviors, including the workings of the apparatus that allows perception of proximal surfaces, the apparatus that allows selection of different surfaces for attachment, and the biochemical cascade and physical consequences that follow the recognition of surfaces. E. coli is a one of the most studied microorganisms in surface sensing. The bacteria can sense the solid surface by the cell surface structure and regulate attachment by controlling cell motility and surface properties through the intracellular signaling system. E. coli can sense solid surfaces through flagella, type I fimbriae, membrane proteins (such as OmpX and NlpE), lipopolysaccharide (LPS) and exopolymeric substances (EPS). In addition, cell density can also affect cell attachment. The buoyant density of bacteria is usually 1.06-1.13 g/mL, which leads to the slow deposition of cells onto surfaces from suspension in bulk liquid. The buoyant density of E. coli increases as they enter stationary phase, which facilitates their rapid deposition on surfaces. Two-component system is the main intracellular signaling system induced by attachment. Specifically, the regulation of pili by two-component system is an important way to control surface sensing. As far as we know, the CpxAR, RcsAB and EnvZ-OmpR pathways can respond to surface signals and regulate pili expression in attachment. Nonetheless, bacterial surface sensing is a phenomenon that is still not well understood at the level of physical chemistry, biochemistry, genetics, and cell biology. The surface sensing of E. coli is a complex, multi- step and coordinated process which may be regulated and/or affected by many factors, particularly in complicated soil systems. A further understanding of the mechanisms of surface sensing will improve our knowledge on not only how microbes, especially pathogens, survive and transmit in soils, but also how soil biofilm is formed.

Key words: surface sensing    attachment    Escherichia coli    biofilm
收稿日期: 2017-07-26 出版日期: 2017-11-01
CLC:  X 172  
基金资助: 国家重点研发计划重点专项(2016YFD0800206);国家自然科学基金优秀青年基金(41522106)
通讯作者: 蔡鹏(http://orcid.org/0000-0002-3103-1542)     E-mail: cp@mail.hzau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高春辉
吴一超
黄巧云
蔡鹏
王立亮

引用本文:

王立亮,高春辉,吴一超,黄巧云,蔡鹏. 大肠杆菌表面感应机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 685-690.

WANG Liliang, GAO Chunhui, WU Yichao, HUANG Qiaoyun, CAI Peng. Research progress on mechanism of surface sensing in Escherichia coli. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 685-690.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2017.07.261        http://www.zjujournals.com/agr/CN/Y2017/V43/I6/685

[1] 薛南冬,刘寒冰,杨兵,苏献伟,王冬琦. 毒死蜱土壤环境行为研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 713-726.
[2] 覃盼,王经纬,王斌,雷喜梅,李龙,黄耀伟. 中国东部5省猪呼肠孤病毒流行病学调查与分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 631-638.
[3] 兰天,楚颖超,张玲玲,赵文,潘运舟,张家玮,朱治强,吴蔚东. 椰衣和椰壳生物质炭的制备及其对溶液中Pb2+的吸附[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 469-477.
[4] 孟凡德,袁国栋,韦婧,毕冬雪,王海龙,刘兴元. 风化煤提取的胡敏酸对镉的吸附性能及其应用潜力[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 460-468.
[5] 张栋,刘兴元,赵红挺. 生物质炭对土壤无机污染物迁移行为影响研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 451-459.
[6] 杨少慧,杨京平,汪华,赵杏. 南方丘陵茶园集水区稻田排水沟渠底泥磷的吸附特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 458-464.
[7] 谢晓梅,廖敏,华嘉媛,陈娜,张楠,徐培智,解开治,徐昌旭,刘光荣. 钢渣对亚铁离子和硫离子的吸附-解吸特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 465-475.
[8] 杜敬霆,孙朋飞,赵宇华,张昕. 壳聚糖生物炭微球对甲基红的吸附及微球菌剂的吸附增益效应[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 228-236.
[9] 舒羚, 安毅, 王晓晗, 秦卫普, 杨琳, 刘向东. 选择吸附性活性炭颗粒的制备及性能[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 111-118.
[10] 胡书琴, 汤一*, 刘莉. 茶渣对儿茶素的吸附动力学[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 679-687.
[11] 陆宗超, 李振兴*, 张立敏, 林洪. 大菱鲆过敏原氧化后理化性质及与IgE结合能力的变化[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 679-686.
[12] 肖海龙*, 赵凯, 林赛君, 王红青, 潘建红. 牛奶β-酪蛋白和大豆β-伴球蛋白双抗制备及夹心ELISA快速定性检测技术的建立[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 222-226.
[13] 张希, 杨明, 宋飞, 张辉*, 冯凤琴*. 脂肪酸及其衍生物的抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 155-160.
[14] 李姝江1, 朱天辉1,2. 杂交竹梢枯病菌毒素蛋白的质膜结合位点[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 355-361.
[15] 张花美,李因来,潘熙萍,蒋爱兰,余榛榛,施曼玲. 抗麦草畏多克隆抗体的制备及其间接竞争ELISA检测方法的建立[J]. 浙江大学学报(农业与生命科学版), 2012, 38(2): 153-158.