Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (5): 619-627    DOI: 10.3785/j.issn.1008-9209.2020.11.161
资源利用与环境保护     
不同缓释肥对蔬菜地氮素流失和重金属镉迁移的影响
张继宁1,2(),张鲜鲜1,2,孙会峰1,2,王从1,2,周胜1,2()
1.上海市农业科学院生态环境保护研究所,上海 201403
2.上海低碳农业工程技术研究中心,上海 201415
Effects of different slow release fertilizers on nitrogen loss and cadmium migration in vegetable fields
Jining ZHANG1,2(),Xianxian ZHANG1,2,Huifeng SUN1,2,Cong WANG1,2,Sheng ZHOU1,2()
1.Institute of Eco-environmental Protection Research, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
2.Shanghai Engineering Research Center of Low-carbon Agriculture, Shanghai 201415, China
 全文: PDF(958 KB)   HTML
摘要:

以受镉污染的菜田为供试土壤,研究硫、磷和矿石粉包衣缓释肥对土壤氮素流失和镉含量的影响。结果表明,与常规施肥处理相比,硫包衣、磷包衣和矿石粉包衣缓释肥处理的土壤中硝态氮(NO3-N)和水溶性总氮(dissolved nitrogen, DN)含量分别增加5.6%~22.2%和29.6%~50.6%;淋出液中的NO3-N和DN含量分别降低9.4%~17.4%和22.8%~31.8%,表明缓释肥处理减少了土壤中氮素流失。土壤电导率、有效磷和速效钾含量分别提高33.5%~41.6%、63.1%~100.0%和27.3%~42.7%。与试验初期的土壤相比,3种缓释肥处理的土壤总镉和有效态镉含量分别降低了13.5%~16.4%和37.6%~48.0%。本研究结果表明,针对中轻度镉污染的土壤,包衣缓释肥可以实现受镉污染菜地的安全利用。这为科学利用缓释肥从源头削减面源污染和重金属累积提供了理论依据。

关键词: 蔬菜包衣面源污染土壤改良    
Abstract:

Based on the experimented cadmium (Cd)-contaminated vegetable fields, the effects of slow release fertilizers (coated with sulfur, phosphate and attapulgite) on soil nitrogen loss and Cd contents were studied. The results showed that, compared with the conventional fertilizer treatment, the contents of NO3-N and dissolved nitrogen (DN) were improved by 5.6%-22.2% and 29.6%-50.6% in the soil samples, and the contents of NO3-N and DN in the leaching solution were decreased by 9.4%-17.4% and 22.8%-31.8%, respectively, indicating that slow release fertilizers could relieve nitrogen loss in soil. The soil electrical conductivity, available phosphorus and available potassium contents increased by 33.5%-41.6%, 63.1%-100.0% and 27.3%-42.7%, respectively. The contents of soil total Cd and available Cd were decreased by 13.5%-16.4% and 37.6%-48.0%, respectively, compared with those of the initial soil. The above results suggest that the coated slow release fertilizers can realize the safe utilization of mildly and moderately Cd contaminated vegetable fields. It provides a theoretical basis for the scientific application of slow release fertilizers to reduce non-point source pollution and heavy metal contamination in a vegetable field.

Key words: vegetable    coating    cadmium    non-point source pollution    soil improvement
收稿日期: 2020-11-16 出版日期: 2021-10-27
CLC:  S 153.6  
基金资助: 国家重点研发计划(2017YFD0801300);国家自然科学基金(41601315)
通讯作者: 周胜     E-mail: j.n.zhang@163.com;zhous@263.net
作者简介: 张继宁(https://orcid.org/0000-0001-9745-7047),E-mail:j.n.zhang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张继宁
张鲜鲜
孙会峰
王从
周胜

引用本文:

张继宁,张鲜鲜,孙会峰,王从,周胜. 不同缓释肥对蔬菜地氮素流失和重金属镉迁移的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 619-627.

Jining ZHANG,Xianxian ZHANG,Huifeng SUN,Cong WANG,Sheng ZHOU. Effects of different slow release fertilizers on nitrogen loss and cadmium migration in vegetable fields. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 619-627.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.11.161        http://www.zjujournals.com/agr/CN/Y2021/V47/I5/619

性质

Property

硫包衣缓释肥

Slow release fertilizer

coated with sulfur

磷包衣缓释肥

Slow release fertilizer

coated with phosphate

矿石粉包衣缓释肥

Slow release fertilizer

coated with attapulgite

来源 Source无机硫包裹尿素矿物磷包裹尿素凹凸棒粉包裹尿素
25 ℃时养分释放期 Nutrient release period at 25 ℃3个月3个月3个月
pH(1∶2.5)7.53±0.037.70±0.027.02±0.01
总碳 Total carbon/(g/kg)176.1±9.7156.9±1.1213.1±4.8
总氮 Total nitrogen/(g/kg)398.9±30.9292.0±12.5284.1±15.0
表1  供试缓释肥的性质
图1  不同缓释肥处理对蔬菜产量(鲜质量)的影响短栅上不同小写字母表示同一种蔬菜不同处理间在P<0.05水平差异有统计学意义。

测试指标

Measured index

不施肥

No fertilization

(CK)

常规施肥

Conventional

fertilization

硫包衣

Sulfur coating

磷包衣

Phosphate

coating

矿石粉包衣

Attapulgite

coating

pH(1∶2.5)7.10±0.32a6.95±0.33a6.90±0.19a6.90±0.20a6.93±0.23a
电导率 Electrical conductivity (1∶5)/(μS/cm)191.33±11.06c440.18±34.79b587.68±46.24a608.35±60.59a623.47±108.49a
有机质 Organic matter/(g/kg)15.91±0.21a16.22±0.23a16.01±0.20a15.93±0.25a16.11±0.28a
速效钾 Available potassium/(mg/kg)139.77±22.95c278.58±12.38b354.76±30.41a396.43±44.77a397.62±42.54a
有效磷 Available phosphorus/(mg/kg)87.50±8.65c158.34±14.44b258.33±28.79a312.50±63.39a316.67±39.44a
水溶性有机碳Dissolved organic carbon/(mg/kg)52.50±4.01a50.33±5.02a50.73±5.32a53.01±5.94a54.73±5.47a
表2  不同缓释肥处理对土壤养分含量的影响
图2  不同缓释肥处理对土壤中氮素含量的影响短栅上不同小写字母表示同一种氮素形态不同处理间在P<0.05水平差异有统计学意义。
图3  不同缓释肥处理对淋出液中氮素含量的影响短栅上不同小写字母表示同一种氮素形态不同处理间在P<0.05水平差异有统计学意义。
图4  不同缓释肥处理对蔬菜中总镉含量的影响短栅上不同小写字母表示同一种蔬菜不同处理间在P<0.05水平差异有统计学意义。

处理

Treatment

菜薹采收后

After pakchoi harvesting

生菜采收后

After lettuce harvesting

卷心菜采收后

After cabbage harvesting

总镉

Total Cd

有效态镉

Available Cd

总镉

Total Cd

有效态镉

Available Cd

总镉

Total Cd

有效态镉

Available Cd

不施肥 No fertilization (CK)2.67±0.09a0.77±0.03a2.46±0.03a0.51±0.01a2.68±0.31a0.48±0.11a
常规施肥 Conventional fertilization2.67±0.05a0.76±0.01a2.47±0.03a0.50±0.00a2.46±0.32a0.48±0.02a
硫包衣 Sulfur coating2.48±0.14a0.78±0.05a2.11±0.09a0.40±0.01b2.37±0.42a0.41±0.02b
磷包衣 Phosphate coating2.48±0.11a0.72±0.02a2.25±0.17a0.39±0.01b2.34±0.31a0.40±0.05b
矿石粉包衣 Attapulgite coating2.45±0.12a0.74±0.06a2.26±0.30a0.38±0.01b2.29±0.66a0.40±0.02b
表3  各茬蔬菜采收后土壤总镉和有效态镉含量 (mg/kg)
1 国家统计局.中国统计年鉴:2020.北京:中国统计出版社,2020. DOI:10.33896/porj.2020.9
National Bureau of Statistics of China. China Statistical Yearbook: 2020. Beijing: China Statistics Press, 2020. (in Chinese)
doi: 10.33896/porj.2020.9
2 张继宁,周胜,孙会峰,等.生物质炭在我国蔬菜地应用的研究现状与展望.农业现代化研究,2018,39(4):543-550. DOI:10.13872/j.1000-0275.2018.0049
ZHANG J N, ZHOU S, SUN H F, et al. Research progress and prospects on the biochar’s application in Chinese vegetable field. Research of Agricultural Modernization, 2018,39(4):543-550. (in Chinese with English abstract)
doi: 10.13872/j.1000-0275.2018.0049
3 ZHUANG M H, LAM S K, ZHANG J, et al. Effect of full substituting compound fertilizer with different organic manure on reactive nitrogen losses and crop productivity in intensive vegetable production system of China. Journal of Environmental Management, 2019,243:381-384. DOI:10.1016/j.jenvman.2019.05.026
doi: 10
4 曹兵,贺发云,徐秋明,等.露地蔬菜的氮肥效应与氮素去向.核农学报,2008,22(3):343-347. DOI:10.3724/SP.J.1148.2008.00259
CAO B, HE F Y, XU Q M, et al. Nitrogen use efficiency and fate of N fertilizers applied to open field vegetables. Journal of Nuclear Agricultural Sciences, 2008,22(3):343-347. (in Chinese with English abstract)
doi: 10.3724/SP.J.1148.2008.00259
5 MIN J, SHI W M. Nitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control it. Science of the Total Environment, 2018,613/614:123-130. DOI:10.1016/j.scitotenv.2017.09.079
doi: 10.1016/j.scitotenv.2017.09.079
6 郑少文,郭智,王子臣,等.太湖流域典型蔬菜地氮素径流流失特征.水土保持学报,2014,28(3):204-208. DOI:10.13870/j.cnki.stbcxb.2014.03.037
ZHENG S W, GUO Z, WANG Z C, et al. Characteristics of nitrogen losses by surface runoff in the typical vegetable field of Taihu Lake Basin. Journal of Soil and Water Conservation, 2014,28(3):204-208. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2014.03.037
7 NORTON G J, DEACON C M, MESTROT A, et al. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK. Science of the Total Environment, 2015,533:520-527. DOI:10.1016/j.scitotenv.2015.06.130
doi: 10.1016/j.scitotenv.2015.06.130
8 王林,徐应明,梁学峰,等.生物炭和鸡粪对镉低积累油菜吸收镉的影响.中国环境科学,2014,34(11):2851-2858. DOI:10.3969/j.issn.1000-6923.2014.11.022
WANG L, XU Y M, LIANG X F, et al. Effects of biochar and chicken manure on cadmium uptake in pakchoi cultivars with low cadmium accumulation. China Environmental Science, 2014,34(11):2851-2858. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6923.2014.11.022
9 程家丽,任硕,刘婷婷,等.2001—2017年我国部分地区蔬菜中砷和重金属累积特征及膳食暴露风险.中国食品卫生杂志,2018,30(2):187-193. DOI:10.13590/j.cjfh.2018.02.013
CHENG J L, REN S, LIU T T, et al. Accumulation and dietary exposure risk of arsenic and heavy metals in the vegetables from some areas of China, 2001—2017. Chinese Journal of Food Hygiene, 2018,30(2):187-193. (in Chinese with English abstract)
doi: 10.13590/j.cjfh.2018.02.013
10 孙凯宁,王克安,杨宁,等.轮作模式下设施菜地主要重金属元素空间分布特征.山东农业科学,2016,48(11):81-84. DOI:10.14083/j.issn.1001-4942.2016.11.019
SUN K N, WANG K A, YANG N, et al. Spatial distribution features of main heavy metal elements in greenhouse soil under rotation mode. Shandong Agricultural Sciences, 2016,48(11):81-84. (in Chinese with English abstract)
doi: 10.14083/j.issn.1001-4942.2016.11.019
11 PURNOMO C W, SAPUTRA H. Chapter 6: Manufacturing of slow and controlled release fertilizer. Controlled Release Fertilizer for Sustainable Agriculture. Amsterdam, the Netherlands: Elsevier, 2021:95-110. DOI:10.1016/B978-0-12-819555-0.00006-6
doi: 10.1016/B978-0-12-819555-0.00006-6
12 全国肥料和土壤调理剂标准化技术委员会.缓释肥料: GB/T 23348—2009.北京:中国标准出版社,2009. DOI:10.5594/m001326
National Technical Committee105on Fertilizers and Soil Conditioners of Standardization Administration of China. Slow Release Fertilizer: GB/T 23348—2009. Beijing: Standards Press of China, 2009. (in Chinese)
doi: 10.5594/m001326
13 田发祥,纪雄辉,谢运河,等.碱性缓释肥对水稻吸收积累Cd的影响.农业环境科学学报,2016,35(11):2116-2122. DOI:10.11654/jaes.2016-0381
TIAN F X, JI X H, XIE Y H, et al. Alkaline slow-release fertilizer decreased rice Cd uptake at Cd-contaminated paddy fields. Journal of Agro-Environment Science, 2016,35(11):2116-2122. (in Chinese with English abstract)
doi: 10.11654/jaes.2016-0381
14 周华敏,陈宝成,王晓琪,等.脲醛缓释肥不同配比对小麦生长及土壤氮素养分的影响.水土保持学报,2017,31(1):179-185. DOI:10.13870/j.cnki.stbcxb.2017.01.03
ZHOU H M, CHEN B C, WANG X Q, et al. Effect of different proportions of urea formaldehyde slow-release nitrogen fertilization on wheat growth and soil nitrogen nutrients. Journal of Soil and Water Conservation, 2017,31(1):179-185. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2017.01.03
15 肖强,徐秋明,衣文平,等.不同灌溉量下微水溶性缓释肥料在春玉米的肥效及环境效应研究.核农学报,2012,26(6):930-935. DOI:10.11869/hnxb.2012.06.0930
XIAO Q, XU Q M, YI W P, et al. Study of slightly-water-soluble slow-release fertilizer on spring corn and environment effect under the condition of different irrigation amount. Journal of Nuclear Agricultural Sciences, 2012,26(6):930-935. (in Chinese with English abstract)
doi: 10.11869/hnxb.2012.06.0930
16 丁志磊,祖艳群,陈建军,等.滇池流域2种坡耕地农林复合系统的地表径流、泥沙输出及径流N、P流失的特征.环境工程学报,2015,9(11):5301-5307. DOI:10.12030/j.cjee.20151127
DING Z L, ZU Y Q, CHEN J J, et al. Characteristics of surface runoff, sediment, N and P losses from two agro-forest plantation patterns in Dianchi Basin. Chinese Journal of Environmental Engineering, 2015,9(11):5301-5307. (in Chinese with English abstract)
doi: 10.12030/j.cjee.20151127
17 邓美华,朱有为,段丽丽,等.农田土壤重金属污染“边生产边修复”综合防治技术模式解析.浙江大学学报(农业与生命科学版),2020,46(2):135-150. DOI:10.3785/j.issn.1008-9209.2019.07.051
DENG M H, ZHU Y W, DUAN L L, et al. Analysis on integrated remediation model of “phytoremediation coupled with agro-production” for heavy metal pollution in farmland soil. Journal of Zhejiang University (Agriculture and Life Sciences), 2020,46(2):135-150. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.07.051
18 FERTAHI S, ILSOUL M, ZEROUAL Y, et al. Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. Journal of Controlled Release, 2021,330(10):341-361. DOI:10.1016/j.jconrel.2020.12.026
doi: 10.1016/j.jconrel.2020.12.026
19 DE BARROS SYLVESTRE T B, BRAOS L B, FILHO F B, et al. Mineral nitrogen fertilization effects on lettuce crop yield and nitrogen leaching. Scientia Horticulturae, 2019,255:153-160. DOI:10.1016/j.scienta.2019.05.032
doi: 10.1016/j.scienta.2019.05.032
20 HUANG L K, WANG Q, ZHOU Q Y, et al. Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis. Environmental Pollution, 2020,264:114677. DOI:10.1016/j.envpol.2020.114677
doi: 10.1016/j.envpol.2020.114677
21 KEENEY D, NELSON D. Nitrogen-inorganic forms//PAGE A L. Methods of Soil Analysis: Part 2. Madison, U.S.: Soil Science Society of America, 1982:643-698. DOI:10.2134/agronmonogr9.2.2ed.c33
doi: 10.2134/agronmonogr9.2.2ed.c33
22 YE H M, LI H F, WANG C S, et al. Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: performance and mechanism. Chemical Engineering Journal, 2020,381:122704. DOI:10.1016/j.cej.2019.122704
doi: 10.1016/j.cej.2019.122704
23 郑卫红,潘国祥,陈伽,等.非金属矿物-EC复合包膜尿素缓释肥制备与释放特征.矿物学报,2016,36(2):247-252. DOI:10.16461/j.cnki.1000-4734.2016.02.012
ZHENG W H, PAN G X, CHEN J, et al. Study on preparation and slow-release properties of coated urea fertilizer by using non-metallic minerals and ethylcellulose. Acta Mineralogica Sinica, 2016,36(2):247-252. (in Chinese with English abstract)
doi: 10.16461/j.cnki.1000-4734.2016.02.012
24 LI Y M, SUN Y X, LIAO S Q, et al. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agricultural Water Management, 2017,186(31):139-146. DOI:10.1016/j.agwat.2017.02.006
doi: 10.1016/j.agwat.2017.02.006
25 窦韦强,安毅,秦莉,等.土壤pH对镉形态影响的研究进展.土壤,2020,52(3):439-444. DOI:10.13758/j.cnki.tr.2020.03.002
DOU W Q, AN Y, QIN L, et al. Advances in effects of soil pH on cadmium form. Soils, 2020,52(3):439-444. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2020.03.002
26 FILIPOVI? L, ROMI? M, ROMI? D, et al. Organic matter and salinity modify cadmium soil (phyto) availability. Eco-toxicology and Environmental Safety, 2018,147:824-831. DOI:10.1016/j.ecoenv.2017.09.041
doi: 10.1016/j.ecoenv.2017.09.041
27 邹茸,王秀斌,迟克宇,等.不同品种硫肥对苋菜镉累积的影响.农业环境科学学报,2018,37(10):2135-2141. DOI:10.11654/jaes.2018-0164
ZOU R, WANG X B, CHI K Y, et al. Effects of different sulfur fertilizers on cadmium accumulation in Amaranshus mangostanus L. Journal of Agro-Environment Science, 2018,37(10):2135-2141. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-0164
28 LI Y Q, GUO P Y, LIU Y J, et al. Effects of sulfur on the toxicity of cadmium to Folsomia candida in red earth and paddy soil in southern Fujian. Journal of Hazardous Materials, 2020,387(5):121683. DOI:10.1016/j.jhazmat.2019.121683
doi: 10.1016/j.jhazmat.2019.121683
29 HUANG Y F, CHEN J H, ZHANG D R. Enhanced vacuole compartmentalization of cadmium in root cells contributes to glutathione-induced reduction of cadmium translocation from roots to shoots in pakchoi (Brassica chinensis L.). Ecotoxicology and Environmental Safety, 2021,208:111616. DOI:10.1016/j.ecoenv.2020.111616
doi: 10.1016/j.ecoenv.2020.111616
30 BASHIR S, ZHU J, FU Q L, et al. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere, 2018,194:579-587. DOI:10.1016/j.chemosphere.2017.11.162
doi: 10.1016/j.chemosphere.2017.11.162
31 LIANG X F, LI N, HE L Z, et al. Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite. Science of the Total Environment, 2019,688:818-828. DOI:10.1016/j.scitotenv.2019.06.335
doi: 10.1016/j.scitotenv.2019.06.335
32 孟媛,张亮,王林权,等.复合污染土壤上几种叶类蔬菜对Cd和As的富集效应.植物营养与肥料学报,2019,25(6):972-981. DOI:10.11674/zwyf.18277
MENG Y, ZHANG L, WANG L Q, et al. Cd and As accumulation of several leafy vegetables in soils contaminated by combined heavy metal. Journal of Plant Nutrition and Fertilizers, 2019,25(6):972-981. (in Chinese with English abstract)
doi: 10.11674/zwyf.18277
33 任艳军,任学军,马建军,等.Cd/Cr复合胁迫下不同品种蔬菜对Cd和Cr积累与转运的差异研究.核农学报,2018,32(5):993-1002. DOI:10.11869/j.issn.100-8551.2018.05.0993
REN Y J, REN X J, MA J J, et al. Study on the variety difference of Cd and Cr accumulation and translocation in vegetable under Cd/Cr combination stress. Journal of Nuclear Agricultural Sciences, 2018,32(5):993-1002. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2018.05.0993
34 陈玉鹏,梁东丽,刘中华,等.大棚蔬菜土壤重金属污染及其控制的研究进展与展望.农业环境科学学报,2018,37(1):9-17. DOI:10.11654/jaes.2017-1070
CHEN Y P, LIANG D L, LIU Z H, et al. Analysis of present situation and control of heavy metal pollution in vegetable greenhouse soils. Journal of Agro-Environment Science, 2018,37(1):9-17. (in Chinese with English abstract)
doi: 10.11654/jaes.2017-1070
[1] 邹文娴,周于宁,顾思婷,黄涂海,支裕优,孟龙,施加春,陈謇,徐建明. 关键时期淹水对不同土壤上水稻镉累积和转运的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 74-88.
[2] 陈芬,余高,吴涵茜,侯建伟,赵成刚. 中药渣生物有机肥对镉-汞复合污染土壤的钝化效果[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 737-747.
[3] 张爽,章明奎. 浙西石灰岩发育土壤镉的积累及其成土过程中镉的淋失特征[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 591-598.
[4] 孟龙,黄涂海,陈謇,钟福林,施加春,徐建明. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 263-271.
[5] 叶真男,王飞儿,嵇灵烨,俞洁. 基于多目标控制的苕溪流域农业产业结构调整[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 66-74.
[6] 柳梦琪, 张广路, 郭长权, 杨婷宇, 米玉玲. 牛磺酸缓解镉诱导的鸡胚睾丸细胞氧化损伤的核转录因子E2 相关因子2/血红素加氧酶-1途径[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 619-628.
[7] 马广. 气吸滚筒式穴盘精量播种流水线设计[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 476-480.
[8] 王梦雨, 袁雯馨, 苗慧莹, 汪炳良, 汪俏梅. 不同采后处理对芸薹属蔬菜芥子油苷代谢和品质影响综述[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 269-274.
[9] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, 张欣, 黄雨晴, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider. 锌和硅对2 种水稻基因型的镉毒害及矿质元素转移的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 294-310.
[10] 何小林,关美艳,范士凯,何虎,金崇伟. 矿质营养元素阻控植物镉积累:从机制到应用[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 747-756.
[11] 胡春琴,李睿,洪春来,曹雯婷,刘嘉伟,周骏,翁焕新. 海藻碘肥对田园水稻、蔬菜及水果碘含量的强化效果[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 552-560.
[12] 代邹,余华清,郭长春,马均,李娜,杨志远,徐徽,孙永健. 外源Na2SeO3和Na2SiO3对不同水稻拔节期镉吸收和积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 441-450.
[13] 周慧芳,王京文,孙吉林,李丹,张奇春. 耐镉菌联合植物吸收对土壤重金属镉污染的修复[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 341-349.
[14] 刘媛,王妮娅,张雯,余佳,魏虹. 镉胁迫对秋华柳植物螯合肽含量的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 298-306.
[15] 罗良旭,高素萍,王成聪,雷霆,闻金燕,罗雁. 紫萼玉簪种子和幼苗对酸雨与镉复合污染的生理生态响应[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 192-202.