Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (3): 368-375    DOI: 10.3785/j.issn.1008-9209.2022.07.011
食品科学     
负载百里酚的聚己内酯纳米纤维膜制备及保鲜应用研究
金蓉1(),蔡子涵2,赵以勒2,沈超怡3,杨智超3,吴迪2,4(),陈昆松2
1.浙江大学农业试验站,浙江 杭州 310058
2.浙江大学农业与生物技术学院,浙江 杭州 310058
3.浙江大学生物系统工程与食品科学学院,浙江 杭州 310058
4.浙江大学中原研究院,河南 郑州 450000
Fabrication of thymol-loaded polycaprolactone nanofiber membrane for freshness preservation
Rong JIN1(),Zihan CAI2,Yile ZHAO2,Chaoyi SHEN3,Zhichao YANG3,Di WU2,4(),Kunsong CHEN2
1.Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
4.Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, Henan, China
 全文: PDF(6919 KB)   HTML
摘要:

现有的传统活性保鲜包装存在孔隙率低、透气性差等缺点,因此制备纳米级保鲜控释包装材料是果蔬采后贮藏和物流领域中的研究热点。本研究采用溶液吹塑纺丝技术制备负载百里酚(thymol, THY)的聚己内酯(polycaprolactone, PCL)纳米纤维膜,并通过材料表征和抑菌实验对THY/PCL纳米纤维膜的性能进行评价。结果表明:负载THY后,PCL纳米纤维膜的结晶度降低,热稳定性提高,而水蒸气透过性能、表面疏水性与机械性能未受影响。此外,THY/PCL纳米纤维膜对大肠埃希菌和金黄色葡萄球菌表现出良好的抑菌活性,展现了在果蔬采后保鲜领域良好的应用前景。

关键词: 溶液吹塑纺丝纳米纤维百里酚聚己内酯果蔬抑菌    
Abstract:

The existing traditional active preservation packaging has disadvantages such as low porosity and poor air permeability, so the fabrication of nano-scale packaging materials that can release slowly and retain freshness is a hot research topic in the field of storage and logistics of postharvest fruits and vegetables. In this study, polycaprolactone (PCL) nanofiber membranes loaded by thymol (THY) were prepared by the solution blow spinning technique, and the properties of THY/PCL nanofiber membranes were evaluated by material characterization and bacterial inhibition experiments. The results showed that the THY/PCL nanofiber membranes had lower crystallinity and increased thermal stability, while their water vapor permeable properties, surface hydrophobicity, and mechanical properties were not affected. In addition, the THY/PCL nanofiber membranes showed good antibacterial activity against Escherichia coli and Staphylococcus aureus, demonstrating a good application prospect in the field of postharvest preservation of fruits and vegetables.

Key words: solution blow spinning    nanofiber    thymol    polycaprolactone    fruits and vegetables    antibacterial
收稿日期: 2022-07-01 出版日期: 2023-06-25
CLC:  S609.3  
基金资助: 浙江省重点研发计划项目(2019C02074);浙江省教育厅一般科研项目(Y202148177);浙江大学科研发展专项(2021FZZX001-55)
通讯作者: 吴迪     E-mail: rong@zju.edu.cn;di_wu@zju.edu.cn
作者简介: 金蓉(https://orcid.org/0000-0002-3703-3784),E-mail:rong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金蓉
蔡子涵
赵以勒
沈超怡
杨智超
吴迪
陈昆松

引用本文:

金蓉,蔡子涵,赵以勒,沈超怡,杨智超,吴迪,陈昆松. 负载百里酚的聚己内酯纳米纤维膜制备及保鲜应用研究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 368-375.

Rong JIN,Zihan CAI,Yile ZHAO,Chaoyi SHEN,Zhichao YANG,Di WU,Kunsong CHEN. Fabrication of thymol-loaded polycaprolactone nanofiber membrane for freshness preservation. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 368-375.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.07.011        https://www.zjujournals.com/agr/CN/Y2023/V49/I3/368

图1  PCL纳米纤维的扫描电镜图
图2  THY和THY/PCL、PCL纳米纤维膜的傅里叶变换红外光谱
图3  THY(A)和THY/PCL纳米纤维膜(B)的X射线衍射结果
图4  PCL和THY/PCL纳米纤维膜的DSC曲线(A)和TGA曲线(B~C)
图5  PCL和THY/PCL纳米纤维膜的机械性能短栅上不同或相同小写字母表示在P<0.05水平差异有或无统计学意义,下同。
图6  PCL和THY/PCL纳米纤维膜的水接触角
图7  PCL和THY/PCL纳米纤维膜的水蒸气透过系数
图8  PCL和THY/PCL纳米纤维膜对金黄色葡萄球菌、大肠埃希菌的抑菌活性
图9  PCL和THY/PCL纳米纤维膜处理下金黄色葡萄球菌(A)和大肠埃希菌(B)的抑菌圈直径
1 隋思瑶,王毓宁,马佳佳,等.活性包装技术在果蔬保鲜上的应用研究进展[J].包装工程,2017,38(9):1-6. DOI:10.19554/j.cnki.1001-3563.2017.09.002
SUI S Y, WANG Y N, MA J J, et al. Research advances of application of active packaging technology in preservation of fruits and vegetables[J]. Packaging Engineering, 2017, 38(9): 1-6. (in Chinese with English abstract)
doi: 10.19554/j.cnki.1001-3563.2017.09.002
2 杨智超,沈超怡,张辉,等.静电纺丝技术在食品保鲜领域的应用及展望[J].未来食品科学,2021,1(2):1-14. DOI:10.12281/ffs2708-1893-20210326-001
YANG Z C, SHEN C Y, ZHANG H, et al. Review on application and prospect of electrospinning technology in food preservation[J]. Future Food Science, 2021, 1(2): 1-14. (in Chinese with English abstract)
doi: 10.12281/ffs2708-1893-20210326-001
3 ZHANG C, LI Y, WANG P, et al. Electrospinning of nano-fibers: potentials and perspectives for active food packaging[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 479-502. DOI: 10.1111/1541-4337.12536
doi: 10.1111/1541-4337.12536
4 CUI T T, YU J F, LI Q, et al. Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning[J]. Advanced Materials, 2020, 32(32): 2000982. DOI: 10.1002/adma.202000982
doi: 10.1002/adma.202000982
5 SHEN C Y, CAO Y, RAO J S, et al. Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging[J]. Food Packaging and Shelf Life, 2021, 29: 100721. DOI: 10.1016/j.fpsl.2021.100721
doi: 10.1016/j.fpsl.2021.100721
6 DADOL G C, KILIC A, TIJING L D, et al. Solution blow spinning (SBS) and SBS-spun nanofibers: materials, methods, and applications[J]. Materials Today Communications, 2020, 25: 101656. DOI: 10.1016/j.mtcomm.2020.101656
doi: 10.1016/j.mtcomm.2020.101656
7 SALEHI B, MISHRA A P, SHUKLA I, et al. Thymol, thyme, and other plant sources: health and potential uses[J]. Phytotherapy Research, 2018, 32(9): 1688-1706. DOI: 10.1002/ptr.6109
doi: 10.1002/ptr.6109
8 MARCHESE A, ORHAN I E, DAGLIA M, et al. Antibac-terial and antifungal activities of thymol: a brief review of the literature[J]. Food Chemistry, 2016, 210: 402-414. DOI: 10.1016/j.foodchem.2016.04.111
doi: 10.1016/j.foodchem.2016.04.111
9 CHEN F P, KONG N Q, WANG L, et al. Nanocomplexation between thymol and soy protein isolate and its improve-ments on stability and antibacterial properties of thymol[J]. Food Chemistry, 2021, 334: 127594. DOI: 10.1016/j.foodchem.2020.127594
doi: 10.1016/j.foodchem.2020.127594
10 SUN J Y, LIU X X, CHEN Z R, et al. The application of polycaprolactone scaffolds with poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) loaded on kidney cell culture[J]. Materials, 2022, 15(4): 1591. DOI: 10.3390/ma15041591
doi: 10.3390/ma15041591
11 YANG Z C, SHEN C Y, ZOU Y C, et al. Application of solution blow spinning for rapid fabrication of gelatin/nylon 66 nanofibrous film[J]. Foods, 2021, 10: 2339. DOI: 10.3390/foods10102339
doi: 10.3390/foods10102339
12 SOW L C, TAN S J, YANG H. Rheological properties and structure modification in liquid and gel of tilapia skin gelatin by the addition of low acyl gellan[J]. Food Hydrocolloids, 2019, 90: 9-18. DOI: 10.1016/j.foodhyd.2018.12.006
doi: 10.1016/j.foodhyd.2018.12.006
13 DENG L L, LI Y, ZHANG A P, et al. Nano-hydroxyapatite incorporated gelatin/zein nanofibrous membranes: fabrication, characterization and copper adsorption[J]. International Journal of Biological Macromolecules, 2020, 154: 1478-1489. DOI: 10.1016/j.ijbiomac.2019.11.029
doi: 10.1016/j.ijbiomac.2019.11.029
14 ZOU Y C, ZHANG C, WANG P, et al. Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging[J]. Carbohydrate Polymers, 2020, 247: 116711. DOI: 10.1016/j.carbpol.2020.116711
doi: 10.1016/j.carbpol.2020.116711
15 HASANPOUR ARDEKANI-ZADEH A, HOSSEINI S F. Electrospun essential oil-doped chitosan/poly(ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits[J]. Carbohydrate Polymers, 2019, 223: 115108. DOI: 10.1016/j.carbpol.2019.115108
doi: 10.1016/j.carbpol.2019.115108
16 CUI H Y, YUAN L, LIN L. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef[J]. Carbohydrate Polymers, 2017, 177: 156-164. DOI: 10.1016/j.carbpol.2017.08.137
doi: 10.1016/j.carbpol.2017.08.137
17 DIAS F T G, REMPEL S P, AGNOL L D, et al. The main blow spun polymer systems: processing conditions and applications[J]. Journal of Polymer Research, 2020, 27(8): 205. DOI: 10.1007/s10965-020-02173-7
doi: 10.1007/s10965-020-02173-7
18 SUN C, CAO J P, WANG Y, et al. Ultrasound-mediated molecular self-assemble of thymol with 2-hydroxypropyl-β-cyclodextrin for fruit preservation[J]. Food Chemistry, 2021, 363: 130327. DOI: 10.1016/j.foodchem.2021.130327
doi: 10.1016/j.foodchem.2021.130327
19 MARRETO R N, CARDOSO G, DOS SANTOS SOUZA B, et al. Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation[J]. International Journal of Pharmaceutics, 2020, 586: 119510. DOI: 10.1016/j.ijpharm.2020.119510
doi: 10.1016/j.ijpharm.2020.119510
20 KO J S, CHO K H, HAN S W, et al. Hydrophilic surface modification of poly(methyl methacrylate)-based ocular pro-stheses using poly(ethylene glycol) grafting[J]. Colloids and Surfaces B: Biointerfaces, 2017, 158: 287-294. DOI: 10.1016/j.colsurfb.2017.07.017
doi: 10.1016/j.colsurfb.2017.07.017
[1] 王振杰,张康,梁莉,熊晴晴,杜华华. 铁饱和度对乳铁蛋白抑菌活性的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 377-382.
[2] 陈海念,冯蓉,杨胜竹,曹本福,文明江,刘丽,陆引罡. 1株生防菌的鉴定及其发酵条件优化[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 177-188.
[3] 曹锦萍,陈烨芝,孙翠,王岳,陈昆松,张长峰,孙崇德. 我国果蔬产地商品化技术支撑体系发展现状[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 1-7.
[4] 刘晓云,徐勇,田世平,陈彤. 竹材次生代谢产物在果蔬采后病害控制与保鲜中的作用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 17-26.
[5] 刘妍,周新奇,俞晓峰,李永强,韩双来. 无损检测技术在果蔬品质检测中的应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 27-37.
[6] 梁泽,王蕾,杨明依,罗自生,徐艳群,李莉. 定量蛋白质组学在果蔬采后商品化处理中的研究现状及进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 8-16.
[7] 水燕,管政兵,叶俊贤,史永红,刘国锋,徐增洪. 克氏原螯虾i-型溶菌酶在巴斯德毕赤酵母中的高效胞外表达及其抑菌活性(英文)[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 526-532.
[8] 卢海燕, 徐重新, 张宵, 梁颖, 刘贤金. 柠檬烯对食源性病原菌的抑菌活性(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 306-312.
[9] 庄远红,刘静娜,黄家福,林娇芬,潘裕添. 食用菌壳聚糖卡波姆复合凝胶的稳定性及其抑菌效果[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 147-152.
[10] 张希, 杨明, 宋飞, 张辉*, 冯凤琴*. 脂肪酸及其衍生物的抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 155-160.
[11] 王春荣, 方程吉, 余庆青, 蒋鹏, 田薇*. 菊米超临界CO2萃取物的气相色谱质谱分析及其抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 167-172.
[12] 赵亦静, 倪密, 诺林, 王学德*. 人工合成抗菌肽对棉花黄萎病菌的抑菌效果[J]. 浙江大学学报(农业与生命科学版), 2013, 39(1): 11-.
[13] 张武岗, 冯俊涛, 方香玲, 薛泉宏, 张兴. 放线菌19G-317菌株的鉴定及其抑菌活性研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 243-248.
[14] 易晓华,冯俊涛,方香玲,李玉平,张 兴. 除虫菊内生拟盘多毛孢Y1菌株的生物学特性及其对植物病原菌的抑制作用[J]. 浙江大学学报(农业与生命科学版), 2008, 34(5): 516-524.
[15] 郝晓娟 刘波 谢关林 葛慈斌 林娟. 短短芽孢杆菌JK-2菌株抑菌物质特性的研究 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(5): 484-489.