Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (1): 8-16    DOI: 10.3785/j.issn.1008-9209.2019.10.151
综述     
定量蛋白质组学在果蔬采后商品化处理中的研究现状及进展
梁泽1(),王蕾1,杨明依1,罗自生1,2,3,徐艳群1,3,李莉1,2,3()
1.浙江大学生物系统工程与食品科学学院,杭州 310058
2.浙江大学,农业农村部农产品产后处理重点实验室,杭州 310058
3.浙江大学宁波研究院,浙江 宁波 315100
Status and progress in quantitative proteomic study of postharvest fruits and vegetables during commercial treatment
Ze LIANG1(),Lei WANG1,Mingyi YANG1,Zisheng LUO1,2,3,Yanqun XU1,3,Li LI1,2,3()
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
2.Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
3.Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China
 全文: PDF(1245 KB)   HTML
摘要:

果蔬采后商品化处理涉及成熟衰老等多种生理和生化反应,利用高通量蛋白质组学技术对蛋白质进行定性和定量分析,识别果蔬成熟衰老过程中重要的蛋白质及其功能,能够对果实成熟衰老、抗逆性、致敏性、外源处理调控机制等进行深入研究。本文综述了定量蛋白质组学技术在果蔬采后商品化处理所涉及的生理生化过程及外源调控机制中的研究现状及进展,对果蔬采后商品化处理中保质保鲜研究具有重要指导意义。

关键词: 蛋白质组学果蔬商品化处理现状进展    
Abstract:

The postharvest commercial treatment of fruits and vegetables involves a variety of physiological and biochemical reactions such as ripening and senescence processes. The qualitative and quantitative analysis of proteins by using high-throughput proteomics can identify important proteins and their functions in the ripening and senescence process of fruits and vegetables, so that in-depth studies can be conducted on the regulation mechanism of fruit ripening and senescence, stress resistance, allergy and the response to exogenous treatment. This paper reviewed the physiological and biochemical changes of fruits and vegetables and the molecular mechanism of regulation after harvest by quantitative proteomics, which provides the guiding significance for the preservation study of fruits and vegetables during postharvest commercial treatment.

Key words: proteomics    fruits and vegetables    commercial treatment    status    progress
收稿日期: 2019-10-15 出版日期: 2020-02-25
CLC:  TS 255.3  
基金资助: “十三五”国家重点研发计划专项(2017YFD0401304)
通讯作者: 李莉     E-mail: liangze0803@zju.edu.cn;lili984@zju.edu.cn
作者简介: 梁泽(https://orcid.org/0000-0002-3780-1157),E-mail:liangze0803@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁泽
王蕾
杨明依
罗自生
徐艳群
李莉

引用本文:

梁泽,王蕾,杨明依,罗自生,徐艳群,李莉. 定量蛋白质组学在果蔬采后商品化处理中的研究现状及进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 8-16.

Ze LIANG,Lei WANG,Mingyi YANG,Zisheng LUO,Yanqun XU,Li LI. Status and progress in quantitative proteomic study of postharvest fruits and vegetables during commercial treatment. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 8-16.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.10.151        http://www.zjujournals.com/agr/CN/Y2020/V46/I1/8

品种

Crops

技术策略

Technical strategies

蛋白质组学研究方法

Proteomic approaches

文献

References

呼吸跃变型果蔬 Climacteric fruits and vegetables

苹果

Malus domestica Borkh.

标记定量肽段双甲基化标记 LC/MS qTOF[21]
标记定量2-DE MALDI-TOP-MS mLC-ESI-IT-MS/MS[16]
标记定量iTRAQ nanoLC-MS/MS[22]
非标记定量非标记 LC/MS MS UPLC/MSE[23]

Amygdalus persica L.

标记定量iTRAQ GC-MS[17]
标记定量2-DE MALDI-TOF/TOF MS[24]
标记定量2-DE LTQ Orbitrap XL LC-MS/MS[25]
标记定量2-DE LC-MS/MS[26]

香蕉

Musa nana Lour.

标记定量nanoLC-MS/MS GC-MS[27]
标记定量MALDI-TOF-TOF MS LC-ESI-MS/MS[28]
标记定量iTRAQ HPLC-MS ESI-QUAD-TOF[18]
标记定量2D-DIGE Q-TOP LC-MS/MS[29]

Pyrus communis L.

标记定量2-DE MALDI-TOF[30]
标记定量2D-DIGE MALDI-TOF/TOF[31]
非标记定量非标记 emPAI[19]
杧果Mangifera indica L.标记定量DIGE MALDI-MS/MS[32]

Prunus armeniaca L.

标记定量2-DE MALDI-TOF-PMF nanoLC-ESI-LIT-MS/MS[33]
非标记定量非标记 LC-ESI-MS/MS[34]

马铃薯

Solanum tuberosum L.

标记定量iTRAQ LC-MS/MS[5]
标记定量Nano-RPLC-MS/MS[35]

番茄

Solanum lycopersicum L.

标记定量iTRAQ NanoLC-MS/MS[36]
标记定量LC-MS和平行反应监测(PRM)[37]
标记定量2-DE MALDI-TOP/MS SDS-PAGE[38]
非呼吸跃变型果蔬 Non-climacteric fruits and vegetables

柑橘

Citrus sinensis L.

标记定量HPLC-MS/MS GS-MS[39]
标记定量2-DE MALDI-TOF-TOFMS[40]
非标记定量iTRAQ[41]
非标记定量非标记谱图计数(SC) LC-MS/MS[42]

草莓

Fragaria ananassa Duch.

标记定量iTRAQ LC-MS/MS[43]
非标记定量多重反应监测(MRM) LC-MS/MS[44]
非标记定量脱甲基肽标记 LC/MS qTOF[45]

葡萄

Vitis vinifera L.

标记定量2-DE GC-MS MALDI-TOF[46]
标记定量2-DE MALDI-TOF/TOF[47]
标记定量2-DE nano-HPLC-Chip MS/MS[48]
花椒Capsicum annuum L.标记定量2-DE DIGE MALDI-TOF/TOF[49]
表1  果蔬采后定量蛋白质组学代表性研究(2010年至今)
图1  果蔬采后定量蛋白质组学研究策略图
1 汤石生,刘军,龚丽,等.果蔬保鲜贮藏技术研究进展.现代农业装备,2018(4):67-73. DOI:10.3969/j.issn.1673-2154.2018.04.018
TANG S S, LIU J, GONG L, et al. Research progress on preservation of fruit and vegetable. Modern Agricultural Equipment, 2018(4):67-73. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-2154.2018.04.018
2 HUAN C, XU Y, AN X J, et al. iTRAQ-based protein profiling of peach fruit during ripening and senescence under different temperatures. Postharvest Biology and Technology, 2019,151:88-97. DOI:10.1016/j.postharvbio.2019.01.017
doi: 10.1016/j.postharvbio.2019.01.017
3 CHU P, YAN G X, YANG Q, et al. iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. Journal of Proteomics, 2015,113:244-259. DOI:10.1016/j.jprot.2014.10.005
doi: 10.1016/j.jprot.2014.10.005
4 LI Y J, SUN S C, ZHANG X Y, et al. New clues concerning pigment biosynthesis in green colored fiber provided by proteomics-based analysis. Journal of Integrative Agriculture, 2018,17(1):46-53. DOI:10.1016/s2095-3119(17)61692-7
doi: 10.1016/s2095-3119(17)61692-7
5 LIN Q, XIE Y J, GUAN W Q, et al. Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chemistry, 2019,297:124991. DOI:10.1016/j.foodchem.2019.124991
doi: 10.1016/j.foodchem.2019.124991
6 朱婉贞,陈存坤,薛文通.差异蛋白质组学在采后果蔬生物与技术研究中的应用.食品工业科技,2016,37(20):377-380. DOI:10.13386/j.issn1002-0306.2016.20.067
ZHU W Z, CHEN C K, XUE W T. Application of differential proteomics in postharvest fruits and vegetables in the study of biological and technical. Science and Technology of Food Industry, 2016,37(20):377-380. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2016.20.067
7 TAN B C, LIM Y S, LAU S E. Proteomics in commercial crops: an overview. Journal of Proteomics, 2017,169:176-188. DOI:10.1016/j.jprot.2017.05.018
doi: 10.1016/j.jprot.2017.05.018
8 JORRIN-NOVO J V, PASCUAL J, SANCHEZ-LUCAS R, et al. Fourteen years of plant proteomics reflected in proteomics: moving from model species and 2-DE-based approaches to orphan species and gel-free platforms. Proteomics, 2015,15(5/6):1089-1112. DOI:10.1002/pmic.201400349
doi: 10.1002/pmic
9 SWEARINGEN K E, LINDER S E. Plasmodium parasites viewed through proteomics. Trends in Parasitology, 2018,34(11):945-960. DOI:10.1016/j.pt.2018.08.003
doi: 10.1016/j.pt.2018.08.003
10 ORTEA I, O’CONNOR G, MAQUET A. Review on proteomics for food authentication. Journal of Proteomics, 2016,147:212-225. DOI:10.1016/j.jprot.2016.06.033
doi: 10.1016/j.jprot.2016.06.033
11 GOUVEIA D, ALMUNIA C, COGNE Y, et al. Ecotoxico proteomics: a decade of progress in our understanding of anthropogenic impact on the environment. Journal of Proteomics, 2019,198:66-77. DOI:10.1016/j.jprot.2018.12.001
doi: 10.1016/j.jprot.2018.12.001
12 TAKAC T, SAMAJOVA O, SAMAJ J. Integrating cell biology and proteomic approaches in plants. Journal of Proteomics, 2017,169:165-175. DOI:10.1016/j.jprot.2017.04.020
doi: 10.1016/j.jprot.2017.04.020
13 KLEE H J, GIOVANNONI J J. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 2011,45:41-59. DOI:10.1146/annurev-genet-110410-132507
doi: 10.1146/annurev-genet-110410-132507
14 GAPPER N E, MCQUINN R P, GIOVANNONI J J. Molecular and genetic regulation of fruit ripening. Plant Molecular Biology, 2013,82(6):575-591. DOI:10.1007/s11103-013-0050-3
doi: 10.1007/s11103-013-0050-3
15 张鹏,赵桂青,张富,等.苹果特性及其贮藏方法浅析.农产品加工,2017(7):65-66.
DOI:10.16693/j.cnki.1671-9646(X).2017.07.021
15 ZHANG P, ZHAO G Q, ZHANG F, et al. Analysis of apple’s feature and its storage method. Farm Products Processing, 2017(7):65-66. (in Chinese with English abstract)
16 ZHENG Q F, SONG J, CAMPBELL-PALMER L, et al. A proteomic investigation of apple fruit during ripening and in response to ethylene treatment. Journal of Proteomics, 2013,93:276-294. DOI:10.1016/j.jprot.2013.02.006
doi: 10.1016/j.jprot.2013.02.006
17 ZHOU H J, YU Z F, YE Z W, et al. Multiplex analyses of the changes of aromatic compounds during the development of peach fruit using GC-MS and iTRAQ proteomic techniques. Scientia Horticulturae, 2018,236:96-105. DOI:10.1016/j.scienta.2018.03.009
doi: 10.1016/j.scienta.2018.03.009
18 XIAO L, LI T T, JIANG G X, et al. Cell wall proteome analysis of banana fruit softening using iTRAQ technology. Journal of Proteomics, 2019,209:103506. DOI:10.1016/j.jprot.2019.103506
doi: 10.1016/j.jprot.2019.103506
19 REUSCHER S, FUKAO Y, MORIMOTO R, et al. Quantitative proteomics-based reconstruction and identification of metabolic pathways and membrane transport proteins related to sugar accumulation in developing fruits of pear (Pyrus communis). Plant and Cell Physiology, 2016,57(3):505-518. DOI:10.1093/pcp/pcw004
doi: 10.1093/pcp/pcw004
20 WU X Q, JIANG L, YU M L, et al. Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence. Journal of Proteomics, 2016,147:197-211. DOI:10.1016/j.jprot.2016.06.005
doi: 10.1016/j.jprot.2016.06.005
21 DU L, SONG J, CAMPBELL-PALMER L, et al. Quantitative proteomic changes in development of superficial scald disorder and its response to diphenylamine and 1-MCP treatments in apple fruit. Postharvest Biology and Technology, 2017,123:33-50. DOI:10.1016/j.postharvbio.2016.08.005
doi: 10.1016/j.postharvbio.2016.08.005
22 LIU R L, WANG Y Y, QIN G Z, et al. iTRAQ-based quantitative proteomic analysis reveals the role of the tonoplast in fruit senescence. Journal of Proteomics, 2016,146:80-89. DOI:10.1016/j.jprot.2016.06.031
doi: 10.1016/j.jprot.2016.06.031
23 BUTS K, MICHIELSSENS S, HERTOG M L A T M, et al. Improving the identification rate of data independent label-free quantitative proteomics experiments on non-model crops: a case study on apple fruit. Journal of Proteomics, 2014,105:31-45. DOI:10.1016/j.jprot.2014.02.015
doi: 10.1016/j.jprot.2014.02.015
24 YU F, SHAO X F, YU L, et al. Proteomic analysis of postharvest peach fruit subjected to chilling stress or non-chilling stress temperatures during storage. Scientia Horticul-turae, 2015,197:72-89. DOI:10.1016/j.scienta.2015.10.045
doi: 10.1016/j.scienta.2015.10.045
25 KARAGIANNIS G S, PAVLOU M P, SARAON P, et al. In-depth proteomic delineation of the colorectal cancer exoproteome: mechanistic insight and identification of potential biomarkers. Journal of Proteomics, 2014,103:121-136. DOI:10.1016/j.jprot.2014.03.018
doi: 10.1016/j.jprot.2014.03.018
26 ALMEIDA A M, URRA C, MORAGA C, et al. Proteomic analysis of a segregant population reveals candidate proteins linked to mealiness in peach. Journal of Proteomics, 2016,131:71-81. DOI:10.1016/j.jprot.2015.10.011
doi: 10.1016/j.jprot.2015.10.011
27 HENG Z, SHENG O, HUANG W J, et al. Integrated proteomic and metabolomic analysis suggests high rates of glycolysis are likely required to support high carotenoid accumulation in banana pulp. Food Chemistry, 2019,297:125016. DOI:10.1016/j.foodchem.2019.125016
doi: 10.1016/j.foodchem.2019.125016
28 LI T T, YUN Z, WU Q X, et al. Proteomic profiling of 24-epibrassinolide-induced chilling tolerance in harvested banana fruit. Journal of Proteomics, 2018,187:1-12. DOI:10.1016/j.jprot.2018.05.011
doi: 10.1016/j.jprot.2018.05.011
29 TOLEDO T T, NOGUEIRA S B, CORDENUNSI B R, et al. Proteomic analysis of banana fruit reveals proteins that are differentially accumulated during ripening. Postharvest Biology and Technology, 2012,70:51-58. DOI:10.1016/j.postharvbio.2012.04.005
doi: 10.1016/j.postharvbio.2012.04.005
30 YAN Y, ZHANG X Y, ZHENG X F, et al. Control of postharvest blue mold decay in pears by Meyerozyma guilliermondii and its effects on the protein expression profile of pears. Postharvest Biology and Technology, 2018,136:124-131. DOI:10.1016/j.postharvbio.2017.10.016
doi: 10.1016/j.postharvbio.2017.10.016
31 GAO Z, ZHANG C J, LUO M, et al. Proteomic analysis of pear (Pyrus pyrifolia) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Proteomics, 2016,16(23):3025-3041. DOI:10.1002/pmic.201600108
doi: 10.1002/pmic.201600108
32 ANDRADE J D M, TOLEDO T T, NOGUEIRA S B, et al. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening. Journal of Proteomics, 2012,75(11):3331-3341. DOI:10.1016/j.jprot.2012.03.047
doi: 10.1016/j.jprot.2012.03.047
33 D’AMBROSIO C, ARENA S, ROCCO M, et al. Proteomic analysis of apricot fruit during ripening. Journal of Proteomics, 2013,78:39-57. DOI:10.1016/j.jprot.2012.11.008
doi: 10.1016/j.jprot.2012.11.008
34 ZHANG W T, LI X H, LI L, et al. A label-free quantitative proteomic investigation reveals stage-responsive ripening genes in apricot fruits. Journal of Horticultural Science & Biotechnology, 2017,92(3):261-269. DOI:10.1080/14620316.2016.1265469
doi: 10.1080/14620316.2016.1265469
35 XUE H L, BI Y, PRUSKY D, et al. The mechanism of induced resistance against Fusarium dry rot in potato tubers by the T-2 toxin. Postharvest Biology and Technology, 2019,153:69-78. DOI:10.1016/j.postharvbio.2019.03.021
doi: 10.1016/j.postharvbio.2019.03.021
36 CAI J H, WANG P W, TIAN S P, et al. Quantitative proteomic analysis reveals the involvement of mitochondrial proteins in tomato fruit ripening. Postharvest Biology and Technology, 2018,145:213-221. DOI:10.1016/j.postharvbio.2018.07.012
doi: 10.1016/j.postharvbio.2018.07.012
37 MATA C I, HERTOG M L A T M, RAEMDONCK G V, et al. Omics analysis of the ethylene signal transduction in tomato as a function of storage temperature. Postharvest Biology and Technology, 2019,155:1-10. DOI:10.1016/j.postharvbio.2019.04.016
doi: 10.1016/j.postharvbio.2019.04.016
38 TZORTZAKIS N, TAYBI T, ANTONY E, et al. Profiling shifts in protein complement in tomato fruit induced by atmospheric ozone-enrichment and/or wound-inoculation with Botrytis cinerea. Postharvest Biology and Technology, 2013,78:67-75. DOI:10.1016/j.postharvbio.2012.12.005
doi: 10.1016/j.postharvbio.2012.12.005
39 MA Q L, DING Y D, CHANG J W, et al. Comprehensive insights on how 2, 4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches. Journal of Experimental Botany, 2014,65(1):61-74. DOI:10.1093/jxb/ert344
doi: 10.1093/jxb/ert344
40 PAN Z Y, ZENG Y L, AN J Y, et al. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics, 2012,75(9):2670-2684. DOI:10.1016/j.jprot.2012.03.016
doi: 10.1016/j.jprot.2012.03.016
41 ZENG Y L, DU J B, WANG L, et al. A comprehensive analysis of chromoplast differentiation reveals complex protein changes associated with plastoglobule biogenesis and remodeling of protein systems in sweet orange flesh. Plant Physiology, 2015,168(4):1648-1665. DOI:10.1104/pp.15.00645
doi: 10.1104/pp.15.00645
42 KATZ E, BOO K H, KIM H Y, et al. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. Journal of Experimental Botany, 2011,62(15):5367-5384. DOI:10.1093/jxb/err197
doi: 10.1093/jxb/err197
43 BAN Z J, YAN J W, WANG Y J, et al. Effects of postharvest application of chitosan-based layer-by-layer assemblies on regulation of ribosomal and defense proteins in strawberry fruit (Fragaria×ananassa). Scientia Horticulturae, 2018,240:293-302. DOI:10.1016/j.scienta.2018.06.035
doi: 10.1016/j.scienta.2018.06.035
44 SONG J, DU L N, LI L, et al. Targeted quantitative proteomic investigation employing multiple reaction monitoring on quantitative changes in proteins that regulate volatile biosynthesis of strawberry fruit at different ripening stages. Journal of Proteomics, 2015,126:288-295. DOI:10.1016/j.jprot.2015.06.004
doi: 10.1016/j.jprot.2015.06.004
45 LI L, SONG J, KALT W, et al. Quantitative proteomic investigation employing stable isotope labeling by peptide dimethylation on proteins of strawberry fruit at different ripening stages. Journal of Proteomics, 2013,94:219-239. DOI:10.1016/j.jprot.2013.09.004
doi: 10.1016/j.jprot.2013.09.004
46 WU Z M, YUAN X Z, LI H, et al. Heat acclimation reduces postharvest loss of table grapes during cold storage: analysis of possible mechanisms involved through a proteomic approach. Postharvest Biology and Technology, 2015,105:26-33. DOI:10.1016/j.postharvbio.2015.03.012
doi: 10.1016/j.postharvbio.2015.03.012
47 YANG Q Y, WANG H Y, ZHANG H Y, et al. Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biology and Technology, 2017,126:15-22. DOI:10.1016/j.postharvbio.2016.11.015
doi: 10.1016/j.postharvbio.2016.11.015
48 LORENZINI M, MAINENTE F, ZAPPAROLI G, et al. Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine. Food Chemistry, 2016,199:639-647. DOI:10.1016/j.foodchem.2015.12.032
doi: 10.1016/j.foodchem.2015.12.032
49 SANCHEZ-BEL P, EGEA I, SANCHEZ-BALLESTA M T, et al. Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach. Journal of Proteomics, 2012,75(17):5463-5478. DOI:10.1016/j.jprot.2012.06.029
doi: 10.1016/j.jprot.2012.06.029
50 LI L, BAN Z, LIMWACHIRANON J, et al. Proteomic studies on fruit ripening and senescence. Critical Reviews in Plant Sciences, 2017,36(2):116-127. DOI:10.1080/07352689.2017.1355173
doi: 10.1080/07352689.2017.1355173
51 LI L, LUO Z S, HUANG X H, et al. Label-free quantitative proteomics to investigate strawberry fruit proteome changes under controlled atmosphere and low temperature storage. Journal of Proteomics, 2015,120:44-57. DOI:10.1016/j.jprot.2015.02.016
doi: 10.1016/j.jprot.2015.02.016
52 罗程印,李高阳,柏连阳,等.植物源活性成分诱导果蔬的抗病性研究.食品工业,2016(10):237-242.
LUO C Y, LI G Y, BO L Y, et al. Research advance on active plant sources ingredient induced disease resistance in fruits and vegetables. The Food Industry, 2016(10):237-242. (in Chinese with English abstract)
53 BURON-MOLES G, WISNIEWSKI M, VINAS I, et al. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen. Journal of Proteomics, 2015,114:136-151. DOI:10.1016/j.jprot.2014.11.007
doi: 10.1016/j.jprot.2014.11.007
54 SHAHEEN N, HALIMA O, AKHTER K T, et al. Proteomic characterization of low molecular weight allergens and putative allergen proteins in lentil (Lens culinaris) cultivars of Bangladesh. Food Chemistry, 2019,297:124936. DOI:10.1016/j.foodchem.2019.06.003
doi: 10.1016/j.foodchem.2019.06.003
55 CARDONA E E G, HEATHCOTE K, TERAN L M, et al. Novel low-abundance allergens from mango via combinatorial peptide libraries treatment: a proteomics study. Food Chemistry, 2018,269:652-660. DOI:10.1016/j.foodchem.2018.06.113
doi: 10.1016/j.foodchem.2018.06.113
56 LI T T, YUN Z, ZHANG D D, et al. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit. Frontiers in Plant Science, 2015,6:00845. DOI:10.3389/fpls.2015.00845
doi: 10.3389/fpls.2015.00845
57 DELELE M A, BESSEMANS N, GRUYTERS W, et al. Spatial distribution of gas concentrations and RQ in a controlled atmosphere storage container with pear fruit in very low oxygen conditions. Postharvest Biology and Technology, 2019,156:110903. DOI:10.1016/j.postharvbio.2019.05.004
doi: 10.1016/j.postharvbio.2019.05.004
58 BRASIL I M, SIDDIQUI M W. Postharvest quality of fruits and vegetables: an overview//Preharvest Modulation of Postharvest Fruit and Vegetable Quality. Amsterdam, the Netherlands: Elsevier Inc., 2018:1-40.
DOI:10.1016/b978-0-12-809807-3.00001-9
doi: 10.1016/b978-0-12-809807-3.00001-9
59 LI T T, ZHU H, WU Q X, et al. Comparative proteomic approaches to analysis of litchi pulp senescence after harvest. Food Research International, 2015,78:274-285. DOI:10.1016/j.foodres.2015.09.033
doi: 10.1016/j.foodres.2015.09.033
60 BOSE S K, HOWLADER P, JIA X C, et al. Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via abscisic acid signaling in strawberry. Food Chemistry, 2019,283:665-674. DOI:10.1016/j.foodchem.2019.01.060
doi: 10.1016/j.foodchem.2019.01.060
61 MOU W S, LI D D, LUO Z S, et al. SlAREB1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. Plant Science, 2018,276:239-249. DOI:10.1016/j.plantsci.2018.07.015
doi: 10.1016/j.plantsci.2018.07.015
62 ZHOU H J, YU Z F, YE Z W, et al. Key proteins associated to coloured compounds of peach peel using iTRAQ proteomic techniques during development and postharvest. Scientia Horticulturae, 2018,239:123-132. DOI:10.1016/j.scienta.2018.05.036
doi: 10.1016/j.scienta.2018.05.036
63 YUAN X Z, WU Z M, LI H, et al. Biochemical and proteomic analysis of ‘Kyoho’ grape (Vitis labruscana) berries during cold storage. Postharvest Biology and Technology, 2014,88:79-87. DOI:10.1016/j.postharvbio.2013.10.001
doi: 10.1016/j.postharvbio.2013.10.001
64 WANG L, ZHANG Y X, CHEN Y, et al. Investigating the relationship between volatile components and differentially expressed proteins in broccoli heads during storage in high CO2 atmospheres. Postharvest Biology and Technology, 2019,153:43-51. DOI:10.1016/j.postharvbio.2019.03.015
doi: 10.1016/j.postharvbio.2019.03.015
65 CHEN S, CHEN X N, FAN J F, et al. iTRAQ proteomics reveals changes in the lettuce (Lactuca sativa L. Grand Rapid) proteome related to colour and senescence under modified atmosphere packaging. Journal of the Science of Food and Agriculture, 2019,99(4):1908-1918. DOI:10.1002/jsfa.9386
doi: 10.1002/jsfa.9386
[1] 刘晓云,徐勇,田世平,陈彤. 竹材次生代谢产物在果蔬采后病害控制与保鲜中的作用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 17-26.
[2] 刘妍,周新奇,俞晓峰,李永强,韩双来. 无损检测技术在果蔬品质检测中的应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 27-37.
[3] 曹锦萍,陈烨芝,孙翠,王岳,陈昆松,张长峰,孙崇德. 我国果蔬产地商品化技术支撑体系发展现状[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 1-7.
[4] 余红, 严建立, 裘劼人, 王淑珍, 忻雅, 童建新, 来文国, 方献平. 草莓响应炭疽菌侵染的差异磷酸化蛋白质组学分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 418-425.
[5] 方献平,和雅妮,奚晓军,查倩,张丽勍,蒋爱丽. 多组学技术揭示葡萄叶片响应灰葡萄孢菌侵染的抗性机制[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 306-316.
[6] 陈鹏飞. 无人机在农业中的应用现状与展望[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 399-406.
[7] 王伟科,袁卫东,方献平,宋吉玲,闫静,陆娜. 秀珍菇不同生长发育阶段蛋白质组学分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 527-535.
[8] 方献平, 朱丽敏, 刘凯, 阮松林, 许宝青, 谢楠, 蔡丽娟, 刘新轶, 戴瑜来, 冯晓宇, 李忠全. 定量蛋白组学揭示三角鲂和团头鲂响应嗜水气单胞菌侵染机制变化[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 602-615.
[9] 吕晓菡, 方献平, 柴伟国, 马俊平, 周毅飞. 辣椒胞质不育系与保持系花药的细胞学和蛋白质组学差异分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 44-55.
[10] 沈莲清  黄光荣  沈报恩. 果蔬呼吸反应动力学研究进展及其在MAP保鲜中的应用[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 671-676.
[11] 周繇. 长白山区野生木本观赏树木调查[J]. 浙江大学学报(农业与生命科学版), 2004, 30(5): 524-535.
[12] 郑文钟  应霞芳  何勇. 浙江省农业机械化发展的系统分析[J]. 浙江大学学报(农业与生命科学版), 2003, 29(2): 147-151.
[13] 严力蛟  汪自强  高勤建  王央杰. 浙江省农业产业结构调整的现状与对策[J]. 浙江大学学报(农业与生命科学版), 2002, 28(2): 231-236.