Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (3): 341-348    DOI: 10.3785/j.issn.1008-9209.2022.04.064
园艺科学     
滇水金凤花距发育相关基因TCP4的克隆及表达分析
李洋(),李凡,孟丹晨,李林菊,魏春梅,黄美娟(),黄海泉()
西南林业大学园林园艺学院/国家林业和草原局西南风景园林工程技术研究中心/云南省功能性花卉资源及产业化技术工程研究中心/西南林业大学园林园艺花卉研发中心,云南 昆明 650224
Cloning and expression analysis of petal spur development related gene TCP4 in Impatiens uliginosa
Yang LI(),Fan LI,Danchen MENG,Linju LI,Chunmei WEI,Meijuan HUANG(),Haiquan HUANG()
College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University/Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration)/Yunnan Engineering Research Center for Functional Flower Resources and Industrialization/Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming 650224, Yunnan, China
 全文: PDF(3717 KB)   HTML
摘要:

为探究滇水金凤(Impatiens uliginosaTCP4基因(IuTCP4)对花距发育的调控作用,通过反转录聚合酶链反应技术克隆其cDNA全长,对其序列进行生物信息学分析,并采用实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction, qRT-PCR)技术探讨IuTCP4基因在花距的不同发育阶段及不同组织部位的时空表达模式。结果表明:滇水金凤IuTCP4基因2个拷贝(IuTCP4.1IuTCP4.2)的cDNA全长分别为1 194、1 173 bp,各编码397个和390个氨基酸,且均不包含内含子;IuTCP4.1IuTCP4.2所编码的蛋白均为不稳定的亲水性蛋白,且均不存在信号肽和跨膜结构域,两者与茶(Camellia sinensis)、苦瓜(Momordica charantia)等15个物种TCP4蛋白的同源性达到66.11%。在系统发育树中这2个拷贝聚为一支,推测它们为旁系同源基因。qRT-PCR结果显示:IuTCP4.1在初期、开花期的花距和檐部存在差异性表达,且在初期的檐部表达量最高;IuTCP4.2在3个发育时期的花距和檐部均存在差异性表达,且在初期的花距中表达量最高。综上所述,IuTCP4基因在花距发育过程中具有一定的调控作用,且主要在花距发育初期发挥作用。上述结果为凤仙花花距发育机制、花形改良和新品种培育提供了一定的理论依据。

关键词: 滇水金凤花距TCP4基因基因克隆表达分析    
Abstract:

To explore the regulation mechanism of TCP4 gene on the development of petal spur of Impatiens uliginosa, the full length cDNA of TCP4 gene in I. uliginosa (named as IuTCP4) was cloned by reverse transcription polymerase chain reaction, and its sequence was analyzed by bioinformatics. Then, real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) was used to investigate the spatiotemporal expression pattern of IuTCP4 gene at different developmental stages and different tissue locations of petal spur. The results showed that the full-length cDNA of two copies (IuTCP4.1 and IuTCP4.2) of TCP4 gene in I. uliginosa were 1 194 bp and 1 173 bp, encoding 397 and 390 amino acids, respectively, and neither contained introns. Both of IuTCP4.1 and IuTCP4.2 encoded proteins were unstable and hydrophilic without signal peptide and transmembrane domain. The homology of amino acid sequences of TCP4 protein between I. uliginosa and other 15 species, such as tea (Camellia sinensis) and balsam pear (Momordica charantia), reached 66.11%. In the phylogenetic tree, IuTCP4.1 and IuTCP4.2 clustered into one branch, suggesting that the two copies of IuTCP4 are paralogous genes. The results of qRT-PCR showed that IuTCP4.1 was differentially expressed between petal spur and limb at both the early stage and blooming stage, with the highest expression quantity in the limb at the early stage; IuTCP4.2 was differentially expressed between petal spur and limb at all three developmental stages, and the highest expression quantity was observed in the petal spur at the early stage. In conclusion, IuTCP4 plays a certain regulatory role in the development of petal spur and mainly functions at the early stage of petal spur development. It is provided a theoretical basis for the development mechanism of petal spur, flower shape improvement and new variety cultivation of Impatiens.

Key words: Impatiens uliginosa    petal spur    TCP4 gene    gene cloning    expression analysis
收稿日期: 2022-04-06 出版日期: 2023-06-25
CLC:  Q78  
基金资助: 国家自然科学基金项目(32060364);云南省重大科技专项计划项目(202102AE090052);云南省重点研发计划项目(2018BB013);云南省教育厅科学研究基金项目(2020Y0410);云南省中青年学术和技术带头人培养项目(2018HB024);云南省高校园林植物与观赏园艺科技创新团队建设项目(51700204);云南省园林植物遗传改良与高效繁育博士生导师团队建设项目(503210103)
通讯作者: 黄美娟,黄海泉     E-mail: 1050502487@qq.com;xmhhq2001@163.com;haiquanl@163.com
作者简介: 李洋(https://orcid.org/0000-0001-9453-473X),E-mail:1050502487@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李洋
李凡
孟丹晨
李林菊
魏春梅
黄美娟
黄海泉

引用本文:

李洋,李凡,孟丹晨,李林菊,魏春梅,黄美娟,黄海泉. 滇水金凤花距发育相关基因TCP4的克隆及表达分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 341-348.

Yang LI,Fan LI,Danchen MENG,Linju LI,Chunmei WEI,Meijuan HUANG,Haiquan HUANG. Cloning and expression analysis of petal spur development related gene TCP4 in Impatiens uliginosa. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 341-348.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.04.064        https://www.zjujournals.com/agr/CN/Y2023/V49/I3/341

基因

Gene

引物序列(5→3

Primer sequence (5→3)

IuTCP4.1

F: ATGGGAGGAGATACTCATAATACC

R: TTAATGGCGAGAATCGGAG

IuTCP4.2

F: ATGGGAAGAGGAGCTAACTC

R: TCAATCGATAATATTATTATGTTGAGAGTCGG

表1  IuTCP全长扩增引物序列
图1  滇水金凤花距的3个发育时期(A)及其组织部位(B)

基因

Gene

引物序列(5→3

Primer sequence (5→3)

IuTCP4.1

F: AGATTGTCGAGGTTCAGGGC

R: TCACTCTGTTTCCTGCGGTC

IuTCP4.2

F: GGAGGAGTTCGTGGGACAAG

R: GCACCTACCGGGAAGAACA

IuActin

F: TGAATGTCCCTGCTGTTTG

R: ACCTTCCGCATAACTTTACC

表2  IuTCP qRT-PCR引物序列
图2  IuTCP4.1 和 IuTCP4.2 的PCR扩增结果M:DL2000+ DNA标志物(marker);1:IuTCP4.1 cDNA;2:IuTCP4.1 gDNA;3:IuTCP4.2 cDNA;4:IuTCP4.2 gDNA。
参量 ParameterIuTCP4.1IuTCP4.2

分子量

Molecular weight/kDa

42.8142.83

理论等电点

Theoretical isoelectric

point (pI)

6.436.22

分子式

Molecular formula

C1 854H2 826N570O597S5C1 854H2 863N563O594S9

原子总数

Total number of atoms

5 8525 883

不稳定指数

Instability index

61.65(不稳定)71.13(不稳定)

脂肪族氨基酸指数

Aliphatic index

56.2460.28

亲水性平均系数

Grand average of

hydropathicity

-0.770-0.784

信号肽

Signal peptide

跨膜结构域

Transmembrane

domain

表3  滇水金凤IuTCP4蛋白生物信息学分析
图3  滇水金凤IuTCP4蛋白序列同源性比对
图4  TCP4蛋白同源序列的系统进化树
图5  IuTCP4 基因在滇水金凤3个时期花距和檐部的相对表达量短栅上不同小写字母表示在P<0.05水平差异有统计学意义,n=3。
1 VLAŠÁNKOVÁ A, PADYŠÁKOVÁ E, BARTOŠ M, et al. The nectar spur is not only a simple specialization for long-proboscid pollinators[J]. New Phytologist, 2017, 215(4): 1574-1581. DOI: 10.1111/nph.14677
doi: 10.1111/nph.14677
2 YANT L, COLLANI S, PUZEY J, et al. Molecular basis for three-dimensional elaboration of the Aquilegia petal spur[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1803): 20142778. DOI: 10.1098/rspb.2014.2778
doi: 10.1098/rspb.2014.2778
3 CULLEN E, FERNÁNDEZ-MAZUECOS M, GLOVER B J. Evolution of nectar spur length in a clade of Linaria reflects changes in cell division rather than in cell expansion[J]. Annals of Botany, 2018, 122(5): 801-809. DOI: 10.1093/aob/mcx213
doi: 10.1093/aob/mcx213
4 RAHELIVOLOLONA E M, FISCHER E, JANSSENS S B, et al. Phylogeny, infrageneric classification and species delimitation in the Malagasy Impatiens (Balsaminaceae)[J]. PhytoKeys, 2018, 110: 51-67. DOI: 10.3897/phytokeys.110.28216
doi: 10.3897/phytokeys.110.28216
5 孙海芹,李昂,班玮,等.濒危植物独花兰的形态变异及其适应意义[J].生物多样性,2005,13(5):376-386. DOI:10.1360/biodiv.050070
SUN H Q, LI A, BAN W, et al. Morphological variation and its adaptive significance for Changnienia amoena, an endangered orchid[J]. Biodiversity Science, 2005, 13(5): 376-386. (in Chinese with English abstract)
doi: 10.1360/biodiv.050070
6 STANG M, KLINKHAMER P G L, VAN DER MEIJDEN E. Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance?[J]. Oecologia, 2007, 151(3): 442-453. DOI: 10.1007/s00442-006-0585-y
doi: 10.1007/s00442-006-0585-y
7 PACINI E, NEPI M, VESPRINI J L. Nectar biodiversity: a short review[J]. Plant Systematics and Evolution, 2003, 238(1/2/3/4): 7-21. DOI: 10.1007/s00606-002-0277-y
doi: 10.1007/s00606-002-0277-y
8 HODGES S A. Floral nectar spurs and diversification[J]. International Journal of Plant Sciences, 1997, 158(S6): S81-S88. DOI: 10.1086/297508
doi: 10.1086/297508
9 KAY K M, WHITTALL J B, HODGES S A. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects[J]. BMC Evolutionary Biology, 2006, 6: 36. DOI: 10.1186/1471-2148-6-36
doi: 10.1186/1471-2148-6-36
10 KRAMER E M, HODGES S A. Aquilegia as a model system for the evolution and ecology of petals[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1539): 477-490. DOI: 10.1098/rstb.2009.0230
doi: 10.1098/rstb.2009.0230
11 MONNIAUX M, Cells HAY A., walls, and forms endless [J]. Current Opinion in Plant Biology, 2016, 34: 114-121. DOI: 10.1016/j.pbi.2016.10.010
doi: 10.1016/j.pbi.2016.10.010
12 BOX M S, DODSWORTH S, RUDALL P J, et al. Charac-terization of Linaria KNOX genes suggests a role in petal-spur development[J]. The Plant Journal, 2011, 68(4): 703-714. DOI: 10.1111/j.1365-313X.2011.04721.x
doi: 10.1111/j.1365-313X.2011.04721.x
13 PUZEY J R, GERBODE S J, HODGES S A, et al. Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1733): 1640-1645. DOI: 10.1098/rspb.2011.1873
doi: 10.1098/rspb.2011.1873
14 SHARMA B, YANT L, HODGES S A, et al. Understanding the development and evolution of novel floral form in Aquilegia [J]. Current Opinion in Plant Biology, 2014, 17: 22-27. DOI: 10.1016/j.pbi.2013.10.006
doi: 10.1016/j.pbi.2013.10.006
15 MACK J L K, DAVIS A R. The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae)[J]. Annals of Botany, 2015, 115(4): 641-649. DOI: 10.1093/aob/mcu261
doi: 10.1093/aob/mcu261
16 GOLZ J F, KECK E J, HUDSON A. Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum [J]. Current Biology, 2002, 12(7): 515-522. DOI: 10.1016/s0960-9822(02)00721-2
doi: 10.1016/s0960-9822(02)00721-2
17 BOX M S, DODSWORTH S, RUDALL P J, et al. Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsii [J]. Journal of Experimental Botany, 2012, 63(13): 4811-4819. DOI: 10.1093/jxb/ers152
doi: 10.1093/jxb/ers152
18 刘丽娟,高辉.TCP家族基因研究进展[J].生物技术通报,2016,32(9):14-22. DOI:10.13560/j.cnki.biotech.bull.1985.2016.09.003
LIU L J, GAO H. Research progress on the family of TCP genes[J]. Biotechnology Bulletin, 2016, 32(9): 14-22. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2016.09.003
19 TRÉMOUSAYGUE D, GARNIER L, BARDET C, et al. Internal telomeric repeats and ‘TCP domain’ protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells[J]. The Plant Journal, 2003, 33(6): 957-966. DOI: 10.1046/j.1365-313x.2003.01682.x
doi: 10.1046/j.1365-313x.2003.01682.x
20 BROHOLM S K, TÄHTIHARJU S, LAITINEN R A E, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence[J]. PNAS, 2008, 105(26): 9117-9122. DOI: 10.1073/pnas.0801359105
doi: 10.1073/pnas.0801359105
21 张寒英,胡江琴,向太和,等.百脉根花对称性基因LjCYC3转化烟草的研究[J].浙江大学学报(农业与生命科学版),2011,37(1):13-21. DOI:10.3785/j.issn.1008-9209.2011.01.003
ZHANG H Y, HU J Q, XIANG T H, et al. Study on transformation of tobacco plant with flower symmetry gene LjCYC3 in Lotus japonicus [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(1): 13-21. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2011.01.003
22 李新艺,李洋,黄武略,等.滇水金凤TTG1同源基因的克隆及表达分析[J].分子植物育种,2021,19(21):7030-7036. DOI:10.13271/j.mpb.019.007030
LI X Y, LI Y, HUANG W L, et al. Cloning and expression analysis of TTG1 homologous genes in Impatiens uliginosa [J]. Molecular Plant Breeding, 2021, 19(21): 7030-7036. (in Chinese with English abstract)
doi: 10.13271/j.mpb.019.007030
23 LUO C, LI Y, BUDHATHOKI R, et al. Complete chloroplast genomes of Impatiens cyanantha and Impatiens monticola: insights into genome structures, mutational hotspots, compara-tive and phylogenetic analysis with its congeneric species[J]. PLoS ONE, 2021, 16(4): e0248182. DOI: 10.1371/journal.pone.0248182
doi: 10.1371/journal.pone.0248182
24 刘春浩,梁楠松,于磊,等.水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J].北京林业大学学报,2017,39(6):22-31. DOI:10.13332/j.1000-1522.20160359
LIU C H, LIANG N S, YU L, et al. Cloning, analyzing and homologous expression of TCP4 transcription factor under abiotic stress and hormone signal in Fraxinus mandschurica [J]. Journal of Beijing Forestry University, 2017, 39(6): 22-31. (in Chinese with English abstract)
doi: 10.13332/j.1000-1522.20160359
25 雷宁,李淑霞,彭明.木薯MeTCP4转录因子的克隆、表达分析及植物表达载体的构建[J].分子植物育种,2018,16(5):1517-1523. DOI:10.13271/j.mpb.016.001517
LEI N, LI S X, PENG M. Cloning and expression analysis of MeTCP4 transcription factor from cassava and construction of plant expression vector[J]. Molecular Plant Breeding, 2018, 16(5): 1517-1523. (in Chinese with English abstract)
doi: 10.13271/j.mpb.016.001517
26 朱煜.紫草LeTCP4基因的克隆及功能分析[D].江苏,南京:南京大学,2012.
ZHU Y. Cloning, expression and functional analysis of LeTCP 4 gene in Lithospermum erythrorhizon [D]. Nanjing, Jiangsu: Nanjing University, 2012. (in Chinese with English abstract)
27 周延培,张雅剑,伊华林.柑橘TCP家族生物信息学及表达谱分析[J].果树学报,2016,33(5):513-522. DOI:10.13925/j.cnki.gsxb.20150192
ZHOU Y P, ZHANG Y J, YI H L. Bioinformatics identification and expression analysis of the Citrus TCP gene family[J]. Journal of Fruit Science, 2016, 33(5): 513-522. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.20150192
28 刘俊,黄容,程占超,等.毛竹TCP基因家族全基因组鉴定与分析[J].基因组学与应用生物学,2018,37(12):5388-5397. DOI:10.13417/j.gab.037.005388
LIU J, HUANG R, CHENG Z C, et al. Genome-wide identification and the whole analysis of TCP gene family in moso bamboo (Phyllostachys edulis)[J]. Genomics and Applied Biology, 2018, 37(12): 5388-5397. (in Chinese with English abstract)
doi: 10.13417/j.gab.037.005388
29 李坤杰,谭杉杉,孙勃,等.芥菜TCP转录因子家族全基因组鉴定及表达分析[J].四川农业大学学报,2019,37(4):459-468. DOI:10.16036/j.issn.1000-2650.2019.04.005
LI K J, TAN S S, SUN B, et al. Genome-wide identification and analysis of TCP transcription factor family in Brassica juncea [J]. Journal of Sichuan Agricultural University, 2019, 37(4): 459-468. (in Chinese with English abstract)
doi: 10.16036/j.issn.1000-2650.2019.04.005
30 魏沙沙,邱小凤,蔡雪玲,等.铁观音茶树转录因子TCP4基因的克隆与序列分析[J].茶叶学报,2018,59(3):113-119. DOI:10.3969/j.issn.1007-4872.2018.03.001
WEI S S, QIU X F, CAI X L, et al. Cloning and sequence analysis of transcription factors TCP4 gene in Tieguanyin (Camellia sinensis)[J]. Acta Tea Sinica, 2018, 59(3): 113-119. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-4872.2018.03.001
31 陶聪聪.矮牵牛TCP3TCP4基因敲除对生长发育的影响[D].重庆:西南大学,2018.
TAO C C. Effects of TCP3 and TCP4 gene knockout on growth and development in Petunia [D]. Chongqing: Southwest University, 2018. (in Chinese with English abstract)
32 PALATNIK J F, ALLEN E, WU X L, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. DOI: 10.1038/nature01958
doi: 10.1038/nature01958
33 KOYAMA T, OHME-TAKAGI M, SATO F. Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana [J]. Plant Signaling & Behavior, 2011, 6(5): 697-699. DOI: 10.4161/psb.6.5.14979
doi: 10.4161/psb.6.5.14979
34 TANAKA Y, YAMAMURA T, OSHIMA Y, et al. Creating ruffled flower petals in Cyclamen persicum by expression of the chimeric cyclamen TCP repressor[J]. Plant Biotechnology, 2011, 28(2): 141-147. DOI: 10.5511/plantbiotechnology.10.1227a
doi: 10.5511/plantbiotechnology.10.1227a
[1] 蔡溧聪,唐明佳,徐进,齐振宇,范飞军,周艳虹. 茭白热激转录因子基因的鉴定与分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 269-279.
[2] 洪敏,贺明阳,王日葵,周炼,王晶,冯雨. 塔罗科血橙室温贮藏期间花色苷和糖酸积累变化及相关代谢基因表达特征[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 589-597.
[3] 李辉,冯伟,于俊杰,张明胤,周春妙,唐永凯. 甲壳动物过氧化物还原酶基因的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 284-294.
[4] 王尤轩,王梦雨,李煜博,陶晗,夏楚楚,黄凯美,汪俏梅. 芥蓝Aux/IAA家族基因生物信息学与表达分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 314-324.
[5] 万发香,王连臻,高军. 茄子1-氨基环丙烷-1-羧酸合成酶基因的生物信息学及其响应逆境胁迫的表达分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 325-334.
[6] 刘慧春,张加强,马广莹,周江华,许雯婷,朱开元. 牡丹PsDHN1基因克隆及转基因拟南芥的耐涝性分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 335-346.
[7] 宣铃娟,程少禹,戴梦怡,王卓为,申亚梅. 紫玉兰MlSOC1基因亚细胞定位及花芽分化时期的表达分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 407-416.
[8] 许抗抗,丁天波,严毅,李灿,杨文佳. CO2气调胁迫下烟草甲谷胱甘肽S-转移酶基因的表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 599-607.
[9] 郑群艳,潘晓艺,沈锦玉,陈少波,徐洋,许婷. 罗氏沼虾谷氨酸脱氢酶基因克隆及其在MrTV 感染下的组织表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 639-648.
[10] 马广莹,朱开元,史小华,邹清成,刘慧春,詹菁,田丹青. 红掌2个SOC1基因的克隆、序列与表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 289-297.
[11] 王家庆,董慧明,李振刚,李绍明,王若楠,付玉洁. 青鳉组织蛋白酶E基因全长cDNA克隆与功能预测[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 183-191.
[12] 卢泳全1*, 贾庆1, 童再康1, 陈见阳2. 柳杉属3个查尔酮合成酶(CHS)新基因的克隆及其序列特异性分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 246-252.
[13] 陈贝贝, 蒋明, 苗立祥, 李温平. 青花菜转录因子基因BoWRKY3的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 243-249.
[14] 王静,刘丽,张志明,赵茂俊,潘光堂. 玉米病程相关蛋白1基因的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 35-42.
[15] 蒋 明,陈孝赏,李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表达与序列分析[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 393-398.