Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (3): 335-346    DOI: 10.3785/j.issn.1008-9209.2020.09.031
园艺学     
牡丹PsDHN1基因克隆及转基因拟南芥的耐涝性分析
刘慧春(),张加强,马广莹,周江华,许雯婷,朱开元()
浙江省园林植物与花卉研究所,杭州 311251
Cloning of PsDHN1 gene of Paeonia suffruticosa and waterlogging tolerance analysis of transgenic Arabidopsis with PsDHN1 gene
Huichun LIU(),Jiaqiang ZHANG,Guangying MA,Jianghua ZHOU,Wenting XU,Kaiyuan ZHU()
Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 311251, China
 全文: PDF(8294 KB)   HTML
摘要:

在前期研究的基础上,从牡丹叶片中获得了脱水素基因PsDHN1的中间序列,利用cDNA末端快速扩增(rapid-amplification of cDNA ends, RACE)技术克隆获得了该基因的全长序列。通过生物信息学分析及转化拟南芥进行功能验证,探讨牡丹脱水素基因PsDHN1的特性及其响应涝害胁迫的功能。生物信息学分析结果表明:PsDHN1基因全长cDNA为864 bp,包括471 bp的开放阅读框,104 bp的5′非编码区和289 bp的3′非编码区。PsDHN1蛋白含有156个氨基酸,其分子质量为16.39 kDa,理论等电点为8.87,亲水性指数为-1.274,为亲水性蛋白,不稳定性指数为44.05,为不稳定性蛋白。PsDHN1蛋白包含3个α-螺旋和1个β-折叠,以及2个Y片段、1个S片段和2个K片段,属于典型的Y2SK2型脱水素。牡丹的PsDHN1蛋白与其他9个物种有一定的同源性,其中与苦瓜、麻风树和胡桃DHN1蛋白的相似度分别达到了58%、54%和53%。亚细胞定位结果表明,PsDHN1主要定位于细胞核和细胞膜上。耐涝性试验结果显示:从表型上看,转PsDHN1基因的拟南芥植株耐涝能力及恢复生长的情况均优于野生型植株;涝害相关的酶如蔗糖合成酶、丙酮酸脱羧酶、α-淀粉酶活性及可溶性蛋白含量均为转基因拟南芥总体高于野生型植株。该研究结果为牡丹耐涝基因的挖掘和进一步研究牡丹耐涝的分子机制提供了理论依据。

关键词: 牡丹PsDHN1基因基因克隆耐涝性    
Abstract:

Based on the previous studies, an intermediate sequence of dehydrin gene PsDHN1 was obtained from the leaves of Paeonia suffruticosa and the full-length sequence of PsDHN1 gene was cloned by the rapid-amplification of cDNA ends (RACE) method. In order to explore the characteristics of PsDHN1 and its function in response to waterlogging stress, bioinformatic analysis and transformation into Arabidopsis for functional verification were performed. The results of bioinformatic analysis showed that the full length cDNA of PsDHN1 was 864 bp, containing an open reading frame (ORF) of 471 bp, and the lengths of 5′ and 3′ noncoding regions were 104 bp and 289 bp, respectively. The protein encoded by PsDHN1 gene contained 156 amino acids with the molecular mass of 16.39 kDa, theoretical isoelectric point of 8.87, hydrophilic index of -1.274, belonging to hydrophilic protein, and instability index of 44.05, belonging to unstable protein. The PsDHN1 protein contained three α-helixes and one β-flod, and two Y fragments, one S fragment and two K fragments that belonged to the typical Y2SK2 dehydratin. In addition, the PsDHN1 protein of P. suffruticosa had some homologies with other nine species, among which the similarities between P. suffruticosa and Momordica charantia, Jatropha curcas, Juglans regia were 58%, 54% and 53%, respectively. Subcellular localization results showed that PsDHN1 was mainly localized in the nucleus and cell membrane. The results of waterlogging tolerance test showed that the phenotype of transgenic Arabidopsis plants with PsDHN1 gene had better waterlogging resistance and growth recovery than the wild-type plants. Moreover, the physiological indexes that related to waterlogging tolerance such as sucrose synthase, pyruvate decarboxylase, α-amylase activities and soluble protein content reflected that transgenic Arabidopsis had higher waterlogging tolerance than wild-type plants. The results provide a theoretical basis for mining waterlogging tolerance genes and further research on the molecular mechanisms of P. suffruticosa.

Key words: Paeonia suffruticosa    PsDHN1 gene    gene cloning    waterlogging tolerance
收稿日期: 2020-09-03 出版日期: 2021-06-25
CLC:  S 685.11  
基金资助: 浙江省农业科学院公共发展专项(617CF0101G);浙江省公益技术应用研究计划(LGN18C150007)
通讯作者: 朱开元     E-mail: lhuichun@163.com;52011648@qq.com
作者简介: 刘慧春(https://orcid.org/0000-0003-4714-2359),Tel:+86-571-82704530,E-mail:lhuichun@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘慧春
张加强
马广莹
周江华
许雯婷
朱开元

引用本文:

刘慧春,张加强,马广莹,周江华,许雯婷,朱开元. 牡丹PsDHN1基因克隆及转基因拟南芥的耐涝性分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 335-346.

Huichun LIU,Jiaqiang ZHANG,Guangying MA,Jianghua ZHOU,Wenting XU,Kaiyuan ZHU. Cloning of PsDHN1 gene of Paeonia suffruticosa and waterlogging tolerance analysis of transgenic Arabidopsis with PsDHN1 gene. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 335-346.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.09.031        http://www.zjujournals.com/agr/CN/Y2021/V47/I3/335

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

5′RP-FATAGCCGCCCGGTGCGATGGTGTCATAT
5′RP-RTCCTTGTGTCCACCACCGGGCATCTTCT
3′RP-FAGCAGCCGGTGAATGCGTATTCGTATGT
3′RP-RAGCTGAGTGTCGAGTCTGTCCCAGGTCA
GFATGTCGTACCAACAACATGACC
GRCTAGTGGCCACCAGGAAGCT
表1  引物序列
图1  PsDHN1基因全长cDNA序列及其推测的氨基酸序列和结构域下划线依次代表Y片段、Y片段、S片段、K片段和K片段.

种类

Type

数量

Number

数量占比

Percentage of

numbers/%

质量占比

Percentage of

mass/%

种类

Type

数量

Number

数量占比

Percentage of

numbers/%

质量占比

Percentage of

mass/%

丙氨酸

Alanine (A)

63.852.61

赖氨酸

Lysine (K)

127.699.40

精氨酸

Arginine (R)

42.563.82

蛋氨酸

Methionine (M)

42.563.21

天冬酰胺

Asparagine (N)

21.281.39

苯丙氨酸

Phenylalanine (F)

00.000.00

天冬氨酸

Aspartic acid (D)

63.854.22

脯氨酸

Proline (P)

106.415.93

半胱氨酸

Cysteine (C)

00.000.00

丝氨酸

Serine (S)

95.774.79

谷氨酰胺

Glutamine (Q)

1710.9013.31

苏氨酸

Threonine (T)

148.978.65

谷氨酸

Glutamic acid (E)

85.136.31

色氨酸

Tryptophan (W)

00.000.00

甘氨酸

Glycine (G)

3321.1511.50

酪氨酸

Tyrosine (Y)

63.855.98

组氨酸

Histidine (H)

127.6910.05

缬氨酸

Valine (V)

31.921.82

异亮氨酸

Isoleucine (I)

74.494.84

吡咯赖氨酸

Pyrrolysine (O)

00.000.00

亮氨酸

Leucine (L)

31.922.07

硒半胱氨酸

Selenium cysteine (U)

00.000.00
表2  PsDHN1蛋白的氨基酸组分
图2  PsDHN1蛋白的二级结构预测

位置(氨基酸个数)

Position (number

of amino acids)

序列

Context

分值

Score

预测分类

Predicted

classification

位置(氨基酸个数)

Position (number

of amino acids)

序列

Context

分值

Score

预测分类

Predicted

classification

71ILHRSGSSS0.521S34HHTGTTGAH0.887T
73HRSGSSSSS0.959S35HTGTTGAHG0.545T
74RSGSSSSSS0.729S40GAHGTGVPG0.599T
75SGSSSSSSS0.974S51GPGMTGVGL0.516T
76GSSSSSSSE0.980S130TAAGTYGTE0.501T
77SSSSSSSED0.997S133GTYGTEQPH0.513T
78SSSSSSEDD0.998S15QTDAYGNPI0.792Y
79SSSSSEDDG0.997S25QTDAYGNPI0.792Y
表3  磷酸化位点预测结果
图3  PsDHN1蛋白的三级结构预测
图4  牡丹PsDHN1蛋白的多序列比对
图5  PsDHN1蛋白与其他物种DHN1蛋白的聚类分析
图6  PsDHN1在本氏烟草叶片中的亚细胞定位GFP:明场下显微镜显示的照片;DIC:暗场下显微镜显示的照片;GFP+DIC:GFP和DIC 2张照片重叠后的效果。
图7  转基因拟南芥PsDHN1基因的实时荧光定量表达分析WT:野生型植株;P1~P3:转基因植株。
图8  转基因拟南芥涝害处理的表型变化A~B.淹水处理5 d后;C~D.恢复生长7 d后。
图9  涝害胁迫下转基因拟南芥的生理指标测定短栅上的不同小写字母表示在相同处理时间内不同植株间在P<0.05水平差异有统计学意义;n=3.
1 POSAS F, CHAMBERS J R, HEYMAN J A, et al. The transcriptional response of yeast to saline stress. Journal of Biological Chemistry, 2000,275(23):17249-17255. DOI:10.1074/jbc.M910016199
doi: 10
2 FUJITA M, FUJITA Y, NOUTOSHI Y, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 2006,9(4):436-442. DOI:10.1016/j.pbi.2006.05.014
doi: 10.1016/j.pbi.2006.05.014
3 SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007,58(2):221-227. DOI:10.1093/jxb/erl164
doi: 10.1093/jxb/erl164
4 DURE L, CROUCH M, HARADA J, et al. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology, 1989,12:475-486.
5 SAVEDRA L, SVESSON J, CARBALLO V, et al. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. The Plant Journal, 2006,45(2):237-249. DOI:10.1111/j.1365-313X.2005.02603.x
doi: 10.1111/j.1365-313X.2005.02603.x
6 夏惠,林玲,高帆,等.植物脱水素对多种逆境的响应.干旱地区农业研究,2014,32(4):47-52. DOI:10.7606/j.issn.1000-7601.2014.04.009
XIA H, LIN L, GAO F, et al. Response of plant dehydrin to various stresses. Agricultural Research in the Arid Areas, 2014,32(4):47-52. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-7601.2014.04.009
7 HANIN M, BRINI F, EBEL C, et al. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior, 2011,6(10):1503-1509. DOI:10.4161/psb.6.10.17088
doi: 10
8 HARA M, FUJINAGA M, KUBOI T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiology and Biochemistry, 2004,42(7/8):657-662. DOI:10.1016/j.plaphy.2004.06.004
doi: 10
9 张宁,孙敏善,刘露露,等.小麦脱水素基因TaDHN-1的特征及其对非生物胁迫响应.中国农业科学,2013,46(4):849-858. DOI:10.3864/j.issn.0578-1752.2013.04.019
ZHANG N, SUN M S, LIU L L, et al. Characterization of a dehydrin gene TaDHN-1 and its response to abiotic stresses in wheat. Scientia Agricultura Sinica, 2013,46(4):849-858. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.04.019
10 JYOTHI-PRAKASH P A, MOHANTY B, WIJAYA E, et al. Identification of salt gland-associated genes and characteri-zation of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC Plant Biology, 2014,14:291. DOI:10.1186/s12870-014-0291-6
doi: 10.1186/s12870-014-0291-6
11 OCHOA-ALFARO A E, RODRíGUEZ-KESSLER M, PéREZ-MORALES M B, et al. Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta, 2012,235:565-578. DOI:10.1007/s00425-011-1531-8
doi: 10.1007/s00425-011-1531-8
12 SUN J, NIE L Z, SUN G Q, et al. Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus. Molecular Biology Reports, 2013,40(3):2281-2291. DOI:10.1007/s11033-012-2291-7
doi: 10.1007/s11033-012-2291-7
13 PARK S Y, NOH K J, YOO J H, et al. Rapid upregulation of dehydrin3 and dehydrin4 in response to dehydration is a characteristic of drought tolerant genotype in barley. Journal of Plant Biology, 2006,49(6):455-462. DOI:10.1007/BF03031126
doi: 10.1007/BF03031126
14 HUNDERTMARK M, HINCHA D K. LEA (late embryo-genesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008,9(1):118. DOI:10.1186/1471-2164-9-118
doi: 10.1186/1471-2164-9-118
15 王俊娟,穆敏,王帅,等.棉花脱水素GhDHN1的克隆及其表达.中国农业科学,2016,49(15):2867-2878. DOI:10.3864/j.issn.0578-1752.2016.15.002
WANG J J, MU M, WANG S, et al. Molecular clone and expression of GhDHN1 gene in cotton (Gossypium hirsutum L.). Scientia Agricultura Sinica, 2016,49(15):2867-2878. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.15.002
16 ROYCHOUDHURY A, ROY C, SENGUPTA D N. Trans-genic tobacco plants overexpression the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Reports, 2007,26:1839-1859. DOI:10.1007/s00299-007-0371-2
doi: 10.1007/s00299-007-0371-2
17 MUNOZ-MAYOR A, PINEDA B, GARCIA-ABELLAN J O, et al. Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. Journal of Plant Physiology, 2012,169(5):459-468. DOI:10.1016/j.jplph.2011.11.018
doi: 10.1016/j.jplph.2011.11.018
18 KOVACS D, KALMAR E, TOROK Z, et al. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiology, 2008,147:381-390. DOI:10.1104/pp.108.118208
doi: 10
19 PENG Y, REYES J L, WEI H, et al. RcDhn5, a cold acclimation responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpression Arabidopsis plants. Physiologia Plantarum, 2008,134:583-597. DOI:10.1111/j.1399-3054.2008.01164.x
doi: 10.1111/j.1399-3054.2008.01164.x
20 FAN Z, WANG X. Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris. Molecular Biology, 2006,40(1):43-50. DOI:10.1134/S0026893306010080
doi: 10.1134/S0026893306010080
21 ALSHEIKH M K, HEYEN B J, RANDALL S K. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. Journal of Biology Chemistry, 2003,278(42):40882-40889. DOI:10.1074/jbc.M307151200
doi: 10.1074/jbc.M307151200
22 史学英,田野,李核,等.小麦K2型脱水蛋白DHN14响应非生物胁迫的功能分析.西北农林科技大学学报(自然科学版),2019,47(5):23-41. DOI:10.13207/j.cnki.jnwafu.2019.05.004
SHI X Y, TIAN Y, LI H, et al. Functional analysis of K2-type wheat dehydrin DHN14 under abiotic stresses. Journal of Northwest A&F University (Natural Science Edition), 2019,47(5):23-41. (in Chinese with English abstract)
doi: 10.13207/j.cnki.jnwafu.2019.05.004
23 KOSOVá K, VíTáMVáS P, PRá?IL I T. Wheat and barley dehydrins under cold, drought, and salinity-what can LEA-Ⅱ protein tell us about plant stress response. Frontiers in Plant Science, 2014,5:343. DOI:10.3389/fpls.2014.00343
doi: 10.3389/fpls.2014.00343
24 ZHOU Y, HE P, XU Y P, et al. Overexpression of CsLEAⅡ, a Y3SK2-type dehydrin gene from cucumber (Cucumis sativus), enhances tolerance to heat and cold in Escherichia coli. AMB Expression, 2017,7(1):182. DOI:10.1186/s13568-017-0483-1
doi: 10.1186/s13568-017-0483-1
25 VASEVA I I, ANDERS I, FELLER U. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens. Journal of Plant Physiology, 2014,171(3/4):213-224. DOI:10.1016/j.jplph.2013.07.013
doi: 10.1016/j.jplph.2013.07.013
26 VLAD F, TURK B E, PEYNOT P, et al. A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. The Plant Journal, 2008,55:104-117. DOI:10.1111/j.1365-313X.2008.03488.x
doi: 10.1111/j.1365-313X.2008.03488.x
27 HALDER T, UPADHYAYA G, RAY S. YSK2 type dehydrin (SbDhn1) from Sorghum bicolor showed improved protection under high temperature and osmotic stress condition. Frontiers in Plant Science, 2017,8:918. DOI:10.3389/fpls.2017.00918
doi: 10.3389/fpls.2017.00918
28 CHEN Y, MA Y, GUO J, et al. Cloning and expression analysis of the dehydrin gene PIDHN1 in peony (Paeonia lactiflora). The Journal of Horticultural Science and Biotechnology, 2018,93(6):557-565. DOI:10.1080/14620316.2018.1431060
doi: 10.1080/14620316.2018.1431060
29 JACKSON M B, RAM P C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 2003,91:227-241. DOI:10.1093/aob/mcf242
doi: 10.1093/aob/mcf242
30 刘慧春,张加强,周江华,等.牡丹PsGRP基因克隆及转基因拟南芥的耐涝性分析.植物生理学报,2021,57(2):373-384. DOI:10.13592/j.cnki.ppj.2020.0466
LIU H C, ZHANG J Q, ZHOU J H, et al. Cloning of PsGRP gene from Paeonia sufftruticosa and waterlogging tolerance analysis of transgenic Arabidopsis. Plant Physiology Journal, 2021,57(2):373-384. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2020.0466
[1] 李辉,冯伟,于俊杰,张明胤,周春妙,唐永凯. 甲壳动物过氧化物还原酶基因的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 284-294.
[2] 许抗抗,丁天波,严毅,李灿,杨文佳. CO2气调胁迫下烟草甲谷胱甘肽S-转移酶基因的表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 599-607.
[3] 郑群艳,潘晓艺,沈锦玉,陈少波,徐洋,许婷. 罗氏沼虾谷氨酸脱氢酶基因克隆及其在MrTV 感染下的组织表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 639-648.
[4] 王家庆,董慧明,李振刚,李绍明,王若楠,付玉洁. 青鳉组织蛋白酶E基因全长cDNA克隆与功能预测[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 183-191.
[5] 刘慧春,马广莹,朱开元, 邹清成,周江华, 田丹青. 牡丹抗逆转录因子基因PsDREB的功能解析[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 679-686.
[6] 卢泳全1*, 贾庆1, 童再康1, 陈见阳2. 柳杉属3个查尔酮合成酶(CHS)新基因的克隆及其序列特异性分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 246-252.
[7] 周文雯, 宋会兴, 陈其兵. 遮荫对天彭牡丹花色的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 407-412.
[8] 蒋 明,陈孝赏,李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表达与序列分析[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 393-398.
[9] 宋晓毅, 徐幼平, 张志新, 徐秋芳, 蔡新忠. 8个番茄ACE全长cDNA序列的克隆和分析[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 249-254.
[10] 俞 路,王雅倩,章世元,李燕舞,李治学. CaBP-D28k基因重组质粒构建[J]. 浙江大学学报(农业与生命科学版), 2008, 34(6): 608-614.
[11] 石生林 潘敏慧 鲁成. 柞蚕核型多角体病毒ptp-2基因克隆及表达[J]. 浙江大学学报(农业与生命科学版), 2007, 33(2): 125-128.
[12] 李卫芬  陆平  周绪霞. 多粘芽孢杆菌β-葡聚糖酶特性及其基因克隆[J]. 浙江大学学报(农业与生命科学版), 2004, 30(3): 331-335.
[13] 汪以真  刘光富  初晓娜  韩菲菲. 抗菌肽Protegrin-1基因的PCR扩增和克隆及序列分析[J]. 浙江大学学报(农业与生命科学版), 2004, 30(3): 336-339.
[14] 汪以真  韩菲菲  黄海青. 小白鼠乳铁蛋白基因片段克隆及不同泌乳阶段乳铁蛋白基因表达的差异[J]. 浙江大学学报(农业与生命科学版), 2004, 30(1): 83-88.
[15] 李红叶  陈力耕  周雪平. 葡萄扇叶病毒杭州分离物 (GFLV-H) P38蛋白基因克隆及序列分析 [J]. 浙江大学学报(农业与生命科学版), 2003, 29(1): 34-38.