Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (4): 481-491    DOI: 10.3785/j.issn.1008-9209.2020.08.213
综述     
RNA甲基化修饰N6-甲基腺苷调控病毒感染的研究进展
吉春苗1,2(),黄耀伟1()
1.浙江大学动物科学学院动物预防医学研究所,杭州 310058
2.岭南现代农业科学与技术广东省实验室肇庆分中心,广东 肇庆 526238
Research advances on the regulation of viral infection by N6-methyladenosine of RNA methylation modification
Chunmiao JI1,2(),Yaowei HUANG1()
1.Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
2.Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, Guangdong, China
 全文: PDF(960 KB)   HTML
摘要:

N6-甲基腺苷(N6-methyladenosine, m6A)是真核生物信使RNA(messenger RNA, mRNA)最广泛的修饰方式之一,在RNA代谢和功能方面发挥重要作用。最近的研究相继发现m6A在多种病毒复制周期中发挥作用,同时影响宿主对病毒感染的应答。宿主与病毒的互作关系受m6A修饰的影响,一方面m6A修饰病毒RNA,调控病毒的复制、基因表达及子代病毒产量;另一方面宿主细胞mRNA m6A修饰的改变可以参与调控病毒感染。m6A调控蛋白的发现以及m6A测序方法的发明,使得关于病毒m6A的报道大量涌现,然而m6A修饰在病毒感染中的具体作用机制至今尚未完全阐明。本文综述了近年来m6A修饰在病毒感染及宿主应答中的作用,旨在为今后进一步深入探索m6A调控病毒感染的功能和机制提供参考。

关键词: N6-甲基腺苷病毒感染调控宿主应答    
Abstract:

N6-methyladenosine (m6A) is one of the most abundant messenger RNA (mRNA) modification methods in eukaryotes, and it plays an important role in RNA metabolism and function. The recent studies have revealed that m6A modification play roles in the life cycles of various viruses and in the host response to the viral infection. The interaction between host and virus is affected by m6A modification. On the one hand, m6A modifies viral RNA and regulate virus replication, gene expression and progeny virus production. On the other hand, changes of m6A modification in the cellular mRNAs can regulate viral infection. With the discovery of m6A regulatory proteins and the invention of m6A sequencing methods, a large number of reports on the viral m6A have emerged. However, the mechanisms of m6A modification in the viral infection have not been thoroughly elucidated. In this paper, we reviewed the recent advances in the different roles of m6A modification in the viral infection and host responses, in order to provide references for further studies on the functions and corresponding mechanisms of m6A during viral infection.

Key words: N6-methyladenosine (m6A)    virus    infection    regulation    host response
收稿日期: 2020-08-21 出版日期: 2021-09-02
CLC:  S 855.3  
基金资助: 国家自然科学基金(32041003)
通讯作者: 黄耀伟     E-mail: jichunmiaomiao@163.com;yhuang@zju.edu.cn
作者简介: 吉春苗(https://orcid.org/0000-0002-0384-8176),E-mail:jichunmiaomiao@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吉春苗
黄耀伟

引用本文:

吉春苗,黄耀伟. RNA甲基化修饰N6-甲基腺苷调控病毒感染的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 481-491.

Chunmiao JI,Yaowei HUANG. Research advances on the regulation of viral infection by N6-methyladenosine of RNA methylation modification. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 481-491.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.08.213        http://www.zjujournals.com/agr/CN/Y2021/V47/I4/481

图1  m6A修饰的分子机制和功能WTAP:肾母细胞瘤1相关蛋白;METTL3:甲基转移酶样蛋白3;METTL14:甲基转移酶样蛋白14;RBM15/15B:RNA结合基序蛋白15/15B;VIRMA:病毒样m6A甲基转移酶相关蛋白;ZC3H13:包含CCCH锌指结构域蛋白13;FTO:脂肪与肥胖相关蛋白;ALKBH5:AlkB同源蛋白5;hnRNPA2/B1:核内不均一核糖核蛋白A2/B1;FMRP:脆性X智力障碍蛋白;IGF2BP:胰岛素生长因子2结合蛋白;eIF3:真核起始因子3。

病毒类型

Virus type

病毒分类

Virus classification

病毒名称

Virus name

m6A在病毒感染中的作用

Role of m6A in viral infection

文献

Reference

反转录病毒 Retrovirus反转录病毒科 RetroviridaeHIV-1有争议 Controversial[37-40]
DNA病毒 DNA virus嗜肝DNA病毒科 HepadnaviridaeHBV双重作用 Dual role[41]
多瘤病毒科 PolyomaviridaeSV40正调控 Positive regulation[42]
疱疹病毒科 HerpesviridaeKSHV有争议 Controversial[43-45]
EBV未知 Unknown[46]

正链 RNA病毒

Positive strain RNA virus

黄病毒科 FlaviviridaeHCV负调控 Negative regulation[47]
ZIKV负调控 Negative regulation[48]
小RNA病毒科 PicornaviridaeEV71正调控 Positive regulation[49]

负链 RNA病毒

Negative strain RNA virus

正黏病毒科 OrthomyxoviridaeIAV正调控 Positive regulation[50]
副黏病毒科 ParamyxoviridaeRSV正调控 Positive regulation[51]
HMPV正调控 Positive regulation[52]
表1  m6A在不同病毒感染中的作用
1 CAO G C, LI H B, YIN Z N, et al. Recent advances in dynamic m6A RNA modification. Open Biology, 2016,6(4):160003. DOI:10.1098/rsob.160003
doi: 10.1098/rsob.160003
2 MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′UTRs and near stop codons. Cell, 2012,149(7):1635-1646. DOI:10.1016/j.cell.2012.05.003
doi: 10.1016/j.cell.2012.05.003
3 DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012,485(7397):201-206. DOI:10.1038/nature11112
doi: 10.1038/nature11112
4 ZHOU J, WAN J, GAO X W, et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature, 2015,526(7574):591-594. DOI:10.1038/nature15377
doi: 10.1038/nature15377
5 GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. m6A mRNA methylation facilitates resolution of na?ve pluripotency toward differentiation. Science, 2015,347(6225):1002-1006. DOI:10.1126/science.1261417
doi: 10.1126/science.1261417
6 ZHONG X, YU J Y, FRAZIER K, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation. Cell Reports, 2018,25(7):1816-1828. DOI:10.1016/j.celrep.2018.10.068
doi: 10.1016/j.celrep.2018.10.068
7 HAUSSMANN I U, BODI Z, SANCHEZ-MORAN E, et al. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature, 2016,540(7632):301-304. DOI:10.1038/nature20577
doi: 10.1038/nature20577
8 XIANG Y, LAURENT B, HSU C H, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature, 2017,543(7646):573-576. DOI:10.1038/nature21671
doi: 10.1038/nature21671
9 CANAANI D, KAHANA C, LAVI S, et al. Identification and mapping of N6-methyladenosine containing sequences in simian virus 40 RNA. Nucleic Acids Research, 1979,6(8):2879-2899.
10 BEEMON K, KEITH J. Localization of N6-methyladenosine in the Rous sarcoma virus genome. Journal of Molecular Biology, 1977,113(1):165-179.
11 NARAYAN P, AYERS D F, ROTTMAN F M. Unequal distribution of N6-methyladenosine in influenza virus mRNAs. Molecular and Cellular Biology, 1987,7(4):1572-1575.
12 LIU J Z, YUE Y N, HAN D L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chemical Biology, 2014,10(2):93-95. DOI:10.1038/nchembio.1432
doi: 10.1038/nchembio.1432
13 PING X L, SUN B F, WANG L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Research, 2014,24(2):177-189. DOI:10.1038/cr.2014.3
doi: 10.1038/cr.2014.3
14 WEN J, Lü R T, MA H H, et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Molecular Cell, 2018,69(6):1028-1038. DOI:10.1016/j.molcel.2018.02.015
doi: 10.1016/j.molcel.2018.02.015
15 YUE Y N, LIU J, CUI X L, et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discovery, 2018,4(1):10. DOI:10.1038/s41421-018-0019-0
doi: 10.1038/s41421-018-0019-0
16 PENDLETON K E, CHEN B B, LIU K Q, et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell, 2017,169(5):824-835. DOI:10.1016/j.cell.2017.05.003
doi: 10.1016/j.cell.2017.05.003
17 MA H H, WANG X Y, CAI J B, et al. N6-methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nature Chemical Biology, 2019,15(1):88-94. DOI:10.1038/s41589-018-0184-3
doi: 10.1038/s41589-018-0184-3
18 JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology, 2011,7(12):885-887. DOI:10.1038/nchembio.687
doi: 10
19 ZHENG G Q, DAHL J A, NIU Y M, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 2013,49(1):18-29. DOI:10.1016/j.molcel.2012.10.015
doi: 10.1016/j.molcel.2012.10.015
20 WANG X, ZHAO B S, ROUNDTREE I A, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 2015,161(6):1388-1399. DOI:10.1016/j.cell.2015.05.014
doi: 10.1016/j.cell.2015.05.014
21 DU H, ZHAO Y, HE J Q, et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nature Communications, 2016,7:12626. DOI:10.1038/ncomms12626
doi: 10.1038/ncomms12626
22 SHI H L, WANG X, LU Z K, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Research, 2017,27(3):315-328. DOI:10.1038/cr.2017.15
doi: 10.1038/cr.2017.15
23 XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Molecular Cell, 2016,61(4):507-519. DOI:10.1016/j.molcel.2016.03.004
doi: 10.1016/j.molcel.2016.03.004
24 ROUNDTREE I A, LUO G Z, ZHANG Z J, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife, 2017,6:e31311. DOI:10.7554/eLife.31311
doi: 10.7554/eLife.31311
25 HSU P J, ZHU Y F, MA H H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 2017,27(9):1115-1127. DOI:10.1038/cr.2017.99
26 CHOE J H, LIN S B, ZHANG W C, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature, 2018,561(7724):556-560. DOI:10.1038/s41586-018-0538-8
doi: 10.1038/s41586-018-0538-8
27 HSU P J, SHI H L, ZHU A C, et al. The RNA-binding protein FMRP facilitates the nuclear export of N6-methyladenosine-containing mRNAs. Journal of Biological Chemistry, 2019,294(52):19889-19895. DOI:10.1074/jbc.ac119.010078
doi: 10.1074/jbc.ac119.010078
28 HUANG H L, WENG H Y, SUN W J, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018,20(3):285-295. DOI:10.1038/s41556-018-0045-z
doi: 10.1038/s41556-018-0045-z
29 ALARCóN C R, GOODARZI H, LEE H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell, 2015,162(6):1299-1308. DOI:10.1016/j.cell.2015.08.011
doi: 10.1016/j.cell.2015.08.011
30 DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SALMON-DIVON M, et al. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nature Protocols, 2013,8(1):176-189. DOI:10.1038/nprot.2012.148
doi: 10.1038/nprot.2012.148
31 CHEN K, LU Z K, WANG X, et al. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angewandte Chemie (International Edition), 2015,54(5):1587-1590. DOI:10.1002/anie.201410647
doi: 10.1002/anie.201410647
32 GROZHIK A V, LINDER B, OLARERIN-GEORGE A O, et al. Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP). Methods in Molecular Biology, 2017,1562:55-78. DOI:10.1007/978-1-4939-6807-7_5
doi: 10.1007/978-1-4939-6807-7_5
33 ZHANG Z, CHEN L Q, ZHAO Y L, et al. Single-base mapping of m6A by an antibody-independent method. Science Advances, 2019,5(7):eaax0250. DOI:10.1126/sciadv.aax0250
doi: 10.1126/sciadv.aax0250
34 PANDEY R R, PILLAI R S. Counting the cuts: MAZTER-seq quantifies m6A levels using a methylation-sensitive ribonuclease. Cell, 2019,178(3):515-517. DOI:10.1016/j.cell.2019.07.006
doi: 10.1016/j.cell.2019.07.006
35 SHU X, CAO J, CHENG M H, et al. A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nature Chemical Biology, 2020,16(8):887-895. DOI:10.1038/s41589-020-0526-9
doi: 10.1038/s41589-020-0526-9
36 WANG Y, XIAO Y, DONG S Q, et al. Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nature Chemical Biology, 2020,16(8):896-903. DOI:10.1038/s41589-020-0525-x
doi: 10.1038/s41589-020-0525-x
37 TIRUMURU N, ZHAO B S, LU W X, et al. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. eLife, 2016,5:e15528. DOI:10.7554/eLife.15528
doi: 10.7554/eLife.15528
38 LICHINCHI G, GAO S, SALETORE Y, et al. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nature Microbiology, 2016,1(4):16011. DOI:10.1038/nmicrobiol.2016.11
doi: 10.1038/nmicrobiol.2016.11
39 KENNEDY E M, BOGERD H P, KORNEPATI A V R, et al. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host & Microbe, 2016,19(5):675-685. DOI:10.1016/j.chom.2016.04.002
doi: 10.1016/j.chom.2016.04.002
40 LU W X, TIRUMURU N, GELAIS C S, et al. N6-methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. Journal of Biological Chemistry, 2018,293(34):12992-13005. DOI:10.1074/jbc.ra118.004215
doi: 10.1074/jbc.ra118.004215
41 IMAM H, KHAN M, GOKHALE N S, et al. N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. PNAS, 2018,115(35):8829-8834. DOI:10.1073/pnas.1808319115
doi: 10.1073/pnas.1808319115
42 TSAI K, COURTNEY D G, CULLEN B R. Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathogens, 2018,14(2):e1006919. DOI:10.1371/journal.ppat.1006919
doi: 10.1371/journal.ppat.1006919
43 YE F C, CHEN E R, NILSEN T W. Kaposi’s sarcoma-associated herpesvirus utilizes and manipulates RNA N6-adenosine methylation to promote lytic replication. Journal of Virology, 2017,91(16):e00466-17. DOI:10.1128/jvi.00466-17
doi: 10.1128/jvi.00466-17
44 HESSER C R, KARIJOLICH J, DOMINISSINI D, et al. N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathogens, 2018,14(4):e1006995. DOI:10.1371/journal.ppat.1006995
doi: 10.1371/journal.ppat.1006995
45 TAN B, LIU H, ZHANG S Y, et al. Viral and cellular N6-methyladenosine and N6, 2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle. Nature Microbiology, 2018,3(1):108-120. DOI:10.1038/s41564-017-0056-8
doi: 10.1038/s41564-017-0056-8
46 LANG F C, SINGH R K, PEI Y G, et al. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis. PLoS Pathogens, 2019,15(6):e1007796. DOI:10.1371/journal.ppat.1007796
doi: 10.1371/journal.ppat.1007796
47 GOKHALE N S, MCINTYRE A B R, MCFADDEN M J, et al. N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host & Microbe, 2016,20(5):654-665. DOI:10.1016/j.chom.2016.09.015
doi: 10.1016/j.chom.2016.09.015
48 LICHINCHI G, ZHAO B S, WU Y G, et al. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host & Microbe, 2016,20(5):666-673. DOI:10.1016/j.chom.2016.10.002
doi: 10.1016/j.chom.2016.10.002
49 HAO H J, HAO S J, CHEN H H, et al. N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Research, 2019,47(1):362-374. DOI:10.1093/nar/gky1007
doi: 10.1093/nar/gky1007
50 COURTNEY D G, KENNEDY E M, DUMM R E, et al. Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host & Microbe, 2017,22(3):377-386. DOI:10.1016/j.chom.2017.08.004
doi: 10.1016/j.chom.2017.08.004
51 XUE M G, ZHAO B S, ZHANG Z J, et al. Viral N6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nature Communications, 2019,10(1):4595. DOI:10.1038/s41467-019-12504-y
doi: 10.1038/s41467-019-12504-y
52 LU M J, ZHANG Z J, XUE M G, et al. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-Ⅰ. Nature Microbiology, 2020,5(4):584-598. DOI:10.1038/s41564-019-0653-9
doi: 10.1038/s41564-019-0653-9
53 DURBIN A F, WANG C, MARCOTRIGIANO J, et al. RNAs containing modified nucleotides fail to trigger RIG-Ⅰ conformational changes for innate immune signaling. mBio, 2016,7(5):e00833-16. DOI:10.1128/mBio.00833-16
doi: 10.1128/mBio.00833-16
54 KARIKó K, BUCKSTEIN M, NI H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005,23(2):165-175. DOI:10.1016/j.immuni.2005.06.008
doi: 10.1016/j.immuni.2005.06.008
55 ZHENG Q L, HOU J, ZHOU Y, et al. The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nature Immunology, 2017,18(10):1094-1103. DOI:10.1038/ni.3830
doi: 10.1038/ni.3830
56 WINKLER R, GILLIS E, LASMAN L, et al. m6A modification controls the innate immune response to infection by targeting type Ⅰ interferons. Nature Immunology, 2019,20:173-182. DOI:10.1038/s41590-018-0275-z
doi: 10.1038/s41590-018-0275-z
57 RUBIO R M, DEPLEDGE D P, BIANCO C, et al. RNA m6A modification enzymes shape innate responses to DNA by regulating interferon β. Genes and Development, 2018,32(23/24):1472-1484. DOI:10.1101/gad.319475.118
doi: 10.1101/gad.319475.118
58 LIU Y, YOU Y L, LU Z K, et al. N6-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science, 2019,365(6458):1171-1176. DOI:10.1126/science.aax4468
doi: 10.1126/science.aax4468
[1] 蒋慧琪,王晶,汪愈超,冯凤琴. 养殖大黄鱼肌肉品质评价及其营养调控的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 275-283.
[2] 赵书荻,吴小锋. 昆虫N6-甲基腺嘌呤的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 295-302.
[3] 李夏,夏文君,毛鍶超,卢舒婷,莫开昆,廖敏,周继勇,郑肖娟. 血清4型禽腺病毒浙江株的分离鉴定及其全基因组序列分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 635-646.
[4] 苗苗,徐彩煌,黄子惠,张小东,张兴,吴永平. 传染性法氏囊病病毒结构的冷冻电镜初步分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(4): 506-511.
[5] 陈艳花,蒋涛,王雪珍,钱平,唐顺明,沈兴家. 家蚕bmo-miR-0031-3p体内下调丝素轻链基因BmFib-L的表达[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 229-236.
[6] 张守平, 申汶涛, 王丽荣, 张百重. c-Jun 蛋白对A 型流感病毒H1N1 感染小鼠体内CD4+和 CD8+ T 细胞增殖的调节作用[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 722-726.
[7] 单颖, 刘子琦, 施杏芬, 李国炜, 陈聪, 罗浩, 刘亚杰, 方维焕, 李肖梁. 浙江及周边地区猪流行性腹泻病毒S基因分子特征分析[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 610-618.
[8] 雷喜梅, 杨永乐, 许姝雅, 赵鹏伟, 王斌, 黄耀伟. 猪流行性腹泻病毒血清学及临床诊断方法研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 149-156.
[9] 徐超, 杨晓炼, 乐敏, 朱书. 细菌促进肠道病毒感染及其机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 140-148.
[10] 陈功文, 温政胜, 秦瑶, 许瑛瑛, 胡福良, 郑火青. 影响越冬期意大利蜜蜂健康的病毒种类研究[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 223-229.
[11] 郑群艳,潘晓艺,沈锦玉,陈少波,徐洋,许婷. 罗氏沼虾谷氨酸脱氢酶基因克隆及其在MrTV 感染下的组织表达分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 639-648.
[12] 宋革,郭玉双,饶黎霞,周雪平,吴建祥. 马铃薯Y病毒单克隆抗体的制备及其检测应用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 517-.
[13] 史利利,蒋彩英,于威,陈琛,蒋磊,巩成见,童富淡. BmNPV orf98对家蚕核型多角体杆状病毒复制、转录及包装的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 623-630.
[14] 肖凤虎,张蕾,谢镇, 郭岩彬,陈敏文, 王勇军. 组氨酸激酶基因barA在水生拉恩菌中的生防调控功能[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 56-63.
[15] 焦阳, 黄文明, 郭海明, 叶均安. 含无患子皂甙的精料对后备牛生产性能和瘤胃发酵的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 358-364.