Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (4): 473-480    DOI: 10.3785/j.issn.1008-9209.2021.02.011
综述     
植物种子铁储存、运输和再利用分子机制的研究进展
常竣泊(),马哲宇,丁忠杰,郑绍建()
浙江大学生命科学学院,植物生理学与生物化学国家重点实验室,杭州 310058
Research progresses on molecular mechanisms of storage, transportation and reutilization of plant seed iron
Junbo CHANG(),Zheyu MA,Zhongjie DING,Shaojian ZHENG()
State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1665 KB)   HTML
摘要:

铁是地壳中含量最丰富的元素之一,在所有地壳元素中排第4位。铁作为一种植物生长发育所必需的微量元素,在光合作用、激素合成、线粒体呼吸以及氮同化等生命进程中发挥着至关重要的作用。植物会将营养生长过程中积累的大部分营养物质如铁等转移到种子中来提高下一代的存活率。由于游离态铁会产生活性氧并对植物造成伤害,因此,铁通常以螯合态的形式储存在种子中。当外界条件适宜时,种子中的铁会被再利用,帮助幼苗从环境中吸收铁之前转化为活跃的光合状态,这对提高幼苗的生命力有非常重要的影响。种子也是全球多数人口对铁的重要膳食来源,而缺铁会导致缺铁性贫血等疾病,威胁人类的生命健康,因此,全面了解种子铁的储存、运输和再利用的分子机制对提高其铁含量和铁生物有效性非常关键。本文总结了目前植物种子铁的长期储存、运输和萌发后铁的再利用的研究进展,并展望了今后需要加强的研究方向,以期为培育铁富集作物和提高膳食铁的生物有效性提供理论指导。

关键词: 种子植物营养运输铁生物强化    
Abstract:

Iron is one of the most abundant elements in the earth’s crust, ranking fourth among all crustal elements. As a trace element necessary for plant growth and development, iron plays a vital role in life processes such as photosynthesis, hormone synthesis, mitochondrial respiration and nitrogen assimilation. Plants transfer a large part of the nutrients accumulated during vegetative growth to seeds to improve the survival rate of the next generation, and iron is no exception. However, since free iron can produce active oxygen and cause damage to plants, iron is generally stored in the seed in a chelated state. When the external conditions are suitable, the seed iron will be reutilized to help the seedlings transform into an active photosynthetic state before absorbing iron from the environment, which has a very important impact on the vitality of seedlings. Seeds are also an important dietary source of iron for most of the world’s population, and iron deficiency can lead to diseases such as iron deficiency anemia which threatens human life and health. Therefore, understanding comprehensively the molecular mechanisms of storage, transportation and reutilization of seed iron is critical to increase seed iron content and iron bioavailable. This article summarizes the current research progress on the long-term storage, transportation and reutilization of iron in plant seeds, as well as the potential strategies for plant iron bioforti?cation, which provides a theoretical basis for cultivating iron-rich crops and improving the bioavailable of dietary iron.

Key words: iron    seed    plant nutrition    transportation    iron bioforti?cation
收稿日期: 2021-02-01 出版日期: 2021-09-02
CLC:  Q 945.1  
基金资助: 国家重点研发计划(2016YFD0100704)
通讯作者: 郑绍建     E-mail: 1113503993@qq.com;sjzheng@zju.edu.cn
作者简介: 常竣泊(https://orcid.org/0000-0002-9493-6699),E-mail:1113503993@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
常竣泊
马哲宇
丁忠杰
郑绍建

引用本文:

常竣泊,马哲宇,丁忠杰,郑绍建. 植物种子铁储存、运输和再利用分子机制的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 473-480.

Junbo CHANG,Zheyu MA,Zhongjie DING,Shaojian ZHENG. Research progresses on molecular mechanisms of storage, transportation and reutilization of plant seed iron. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 473-480.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.02.011        http://www.zjujournals.com/agr/CN/Y2021/V47/I4/473

图1  拟南芥种子(A)和水稻种子(B)铁储存、运输和再利用模式图
1 GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available. Plant Physiology, 1994,104(3):815-820. DOI:10.1104/pp.104.3.815
doi: 10.1104/pp.104.3.815
2 ROUT G R, SAHOO S. Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 2015,3:1-24. DOI:10.7831/ras.3.1
doi: 10.7831/ras.3.1
3 BRIAT J F, DUBOS C, GAYMARD F. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 2015,20(1):33-40. DOI:10.1016/j.tplants.2014.07.005
doi: 10.1016/j.tplants.2014.07.005
4 MURGIA I, AROSIO P, TARANTINO D, et al. Biofor-tification for combating ‘hidden hunger’ for iron. Trends in Plant Science, 2012,17(1):47-55. DOI:10.1016/j.tplants.2011.10.003
doi: 10.1016/j.tplants.2011.10.003
5 CONNORTON J M, BALK J, RODRíGUEZ-CELMA J. Iron homeostasis in plants: a brief overview. Metallomics, 2017,9(7):813-823. DOI:10.1039/c7mt00136c
doi: 10.1039/c7mt00136c
6 MARI S, BAILLY C, THOMINE S. Handing off iron to the next generation: How does it get into seeds and what for?The Biochemical Journal, 2020,477(1):259-274. DOI:10.1042/BCJ20190188
doi: 10.1042/BCJ20190188
7 SCHNELL RAMOS M, KHODJA H, MARY V, et al. Using μPIXE for quantitative mapping of metal concentration in Arabidopsisthaliana seeds. Frontiers in Plant Science, 2013,4:168. DOI:10.3389/fpls.2013.00168
doi: 10.3389/fpls.2013.00168
8 ROSCHZTTARDTZ H, CONéJéRO G, CURIE C, et al. Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Physiology, 2009,151(3):1329-1338. DOI:10.1104/pp.109.144444
doi: 10.1104/pp.109.144444
9 MARY V, SCHNELL RAMOS M, GILLET C, et al. Bypassing iron storage in endodermal vacuoles rescues the iron mobilization defect in the natural resistance associated-macrophage protein3 natural resistance associated-macrophage protein4 double mutant. Plant Physiology, 2015,169(1):748-759. DOI:10.1104/pp.15.00380
doi: 10.1104/pp.15.00380
10 KIM S A, PUNSHON T, LANZIROTTI A, et al. Locali-zation of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science, 2006,314(5803):1295-1298. DOI:10.1126/science.1132563
doi: 10.1126/science.1132563
11 EROGLU S, GIEHL R F H, MEIER B, et al. Metal tolerance protein 8 mediates manganese homeostasis and iron reallocation during seed development and germination. Plant Physiology, 2017,174(3):1633-1647. DOI:10.1104/pp.16.01646
doi: 10.1104/pp.16.01646
12 CHU H H, CAR S, SOCHA A L, et al. The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds. Scientific Reports, 2017,7(1):11024. DOI:10.1038/s41598-017-11250-9
doi: 10.1038/s41598-017-11250-9
13 CVITANICH C, PRZYBY?OWICZ W J, URBANSKI D F, et al. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds. BMC Plant Biology, 2010,10:26. DOI:10.1186/1471-2229-10-26
doi: 10.1186/1471-2229-10-26
14 IBEAS M A, GRANT-GRANT S, CORONAS M F, et al. The diverse iron distribution in eudicotyledoneae seeds: from Arabidopsis to Quinoa. Frontiers in Plant Science, 2019,9:1985. DOI:10.3389/fpls.2018.01985
doi: 10.3389/fpls.2018.01985
15 IWAI T, TAKAHASHI M, ODA K, et al. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiology, 2012,160(4):2007-2014. DOI:10.1104/pp.112.206573
doi: 10.1104/pp.112.206573
16 SINGH S P, VOGEL-MIKU? K, AR?ON I, et al. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. Journal of Experimental Botany, 2013,64(11):3249-3260. DOI:10.1093/jxb/ert160
doi: 10.1093/jxb/ert160
17 LOTT J N, SPITZER E. X-ray analysis studies of elements stored in protein body globoid crystals of Triticum grains. Plant Physiology, 1980,66(3):494-499.
18 ZHANG Y, XU Y H, YI H Y, et al. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron trans-location between flag leaves and seeds in rice. The Plant Journal, 2012,72(3):400-410. DOI:10.1111/j.1365-313X.2012.05088.x
doi: 10.1111/j.1365-313X.2012.05088.x
19 ZIELI?SKA-DAWIDZIAK M. Plant ferritin: a source of iron to prevent its deficiency. Nutrients, 2015,7(2):1184-1201. DOI:10.3390/nu7021184
doi: 10.3390/nu7021184
20 PETIT J M, BRIAT J F, LOBRéAUX S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochemical Journal, 2001,359(3):575-582. DOI:10.1042/bj3590575
doi: 10.1042/bj3590575
21 MARENTES E, GRUSAK M A. Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.). Seed Science Research, 1998,8(3):367-375. DOI:10.1017/S0960258500004293
doi: 10.1017/S0960258500004293
22 LESCURE A M, PROUDHON D, PESEY H, et al. Ferritin gene transcription is regulated by iron in soybean cell cultures. PNAS, 1991,88(18):8222-8226. DOI:10.1073/pnas.88.18.8222
doi: 10.1073/pnas.88.18.8222
23 SUN Y, LI J Q, YAN J Y, et al. Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor. Journal of Integrative Plant Biology, 2020,62(8):1193-1212. DOI:10.1111/jipb.12986
doi: 10.1111/jipb.12986
24 HAVé M, MARMAGNE A, CHARDON F, et al. Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. Journal of Experimental Botany, 2017,68(10):2513-2529. DOI:10.1093/jxb/erw365
doi: 10.1093/jxb/erw365
25 ROSCHZTTARDTZ H, CONéJéRO G, DIVOL F, et al. New insights into Fe localization in plant tissues. Frontiers in Plant Science, 2013,4:350. DOI:10.3389/fpls.2013.00350
doi: 10.3389/fpls.2013.00350
26 POTTIER M, DUMONT J, MASCLAUX-DAUBRESSE C, et al. Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. Journal of Experimental Botany, 2019,70(3):859-869. DOI:10.1093/jxb/ery388
doi: 10.1093/jxb/ery388
27 UAUY C, DISTELFELD A, FAHIMA T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006,314(5803):1298-1301. DOI:10.1126/science.1133649
doi: 10.1126/science.1133649
28 CURIE C, BRIAT J F. Iron transport and signaling in plants. Annual Review of Plant Biology, 2003,54:183-206. DOI:10.1146/annurev.arplant.54.031902.135018
doi: 10
29 HINDT M N, GUERINOT M L. Getting a sense for signals: regulation of the plant iron deficiency response. Biochimica et Biophysica Acta, 2012,1823(9):1521-1530. DOI:10.1016/j.bbamcr.2012.03.010
doi: 10.1016/j.bbamcr.2012.03.010
30 KLATTE M, SCHULER M, WIRTZ M, et al. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiology, 2009,150(1):257-271. DOI:10.1104/pp.109.136374
doi: 10.1104/pp.109.136374
31 LE JEAN M, SCHIKORA A, MARI S, et al. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. The Plant Journal, 2005,44(5):769-782. DOI:110.1111/j.1365-313X.2005.02569.x
doi: 110.1111/j.1365-313X.2005.02569.x
32 WATERS B M, CHU H H, DIDONATO R J, et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology, 2006,141(4):1446-1458. DOI:10.1104/pp.106.082586
doi: 10.1104/pp.106.082586
33 CHU H H, CHIECKO J, PUNSHON T, et al. Successful reproduction requires the function of Arabidopsis yellow stripe-like1 and yellow stripe-like3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiology, 2010,154:197-210. DOI:10.1104/pp.110.159103
doi: 10.1104/pp.110.159103
34 KOIKE S, INOUE H, MIZUNO D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. The Plant Journal, 2004,39(3):415-424. DOI:10.1111/j.1365-313X.2004.02146.x
doi: 10.1111/j.1365-313X.2004.02146.x
35 ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. The Plant Journal, 2010,62(3):379-390. DOI:10.1111/j.1365-313X.2010.04158.x
doi: 10.1111/j.1365-313X.2010.04158.x
36 LEE S, CHIECKO J C, KIM S A, et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology, 2009,150(2):786-800. DOI:10.1104/pp.109.135418
doi: 10.1104/pp.109.135418
37 SENOURA T, SAKASHITA E, KOBAYASHI T, et al. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Molecular Biology, 2017,95(4/5):375-387. DOI:10.1007/s11103-017-0656-y
doi: 10.1007/s11103-017-0656-y
38 STACEY M G, KOH S, BECKER J, et al. AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. The Plant Cell, 2002,14(11):2799-2811. DOI:10.1105/tpc.005629
doi: 10.1105/tpc.005629
39 STACEY M G, PATEL A, MCCLAIN W E, et al. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiology, 2008,146(2):589-601. DOI:10.1104/pp.107.108183
doi: 10.1104/pp.107.108183
40 ZHAI Z, GAYOMBA S R, JUNG H I, et al. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. The Plant Cell, 2014,26(5):2249-2264. DOI:10.1105/tpc.114.123737
doi: 10.1105/tpc.114.123737
41 ROSCHZTTARDTZ H, SéGUéLA-ARNAUD M, BRIAT J F, et al. The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. The Plant Cell, 2011,23(7):2725-2737. DOI:10.1105/tpc.111.088088
doi: 10.1105/tpc.111.088088
42 MORRISSEY J, BAXTER I R, LEE J, et al. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. The Plant Cell, 2009,21(10):3326-3338. DOI:10.1105/tpc.109.069401
doi: 10.1105/tpc.109.069401
43 GRILLET L, OUERDANE L, FLIS P, et al. Ascorbate efflux as a new strategy for iron reduction and transport in plants. The Journal of Biological Chemistry, 2014,289(5):2515-2525. DOI:10.1074/jbc.M113.514828
doi: 10.1074/jbc.M113.514828
44 BELGAROUI N, ZAIDI I, FARHAT A, et al. Over-expression of the bacterial phytase US417 in Arabidopsis reduces the concentration of phytic acid and reveals its involvement in the regulation of sulfate and phosphate homeostasis and signaling. Plant and Cell Physiology, 2014,55(11):1912-1924. DOI:10.1093/pcp/pcu122
doi: 10.1093/pcp/pcu122
45 LANQUAR V, LELIèVRE F, BOLTE S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. The EMBO Journal, 2005,24(23):4041-4051. DOI:10.1038/sj.emboj.7600864
doi: 10.1038/sj.emboj.7600864
46 TAKAHASHI M, NOZOYE T, KITAJIMA N, et al. In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray fluorescence imaging of Fe, Zn, Mn, and Cu. Plant and Soil, 2009,325(1):39. DOI:10.1007/s11104-009-0045-7
doi: 10.1007/s11104-009-0045-7
47 NOZOYE T, INOUE H, TAKAHASHI M, et al. The expression of iron homeostasis-related genes during rice germination. Plant Molecular Biology, 2007,64(1/2):35-47. DOI:10.1007/s11103-007-9132-4
doi: 10.1007/s11103-007-9132-4
48 LEE S, KIM Y S, JEON U S, et al. Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Molecules and Cells, 2012,33(3):269-275. DOI:10.1007/s10059-012-2231-3
doi: 10.1007/s10059-012-2231-3
49 LEE S, AN G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell and Environment, 2009,32(4):408-416. DOI:10.1111/j.1365-3040.2009.01935.x
doi: 10.1111/j.1365-3040.2009.01935.x
[1] 邹文娴,周于宁,顾思婷,黄涂海,支裕优,孟龙,施加春,陈謇,徐建明. 关键时期淹水对不同土壤上水稻镉累积和转运的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 74-88.
[2] 曹栋栋,吴伟,陈珊宇,秦叶波,阮关海,陆敏,钱培丽,黄玉韬. 低温发芽测定早稻种子活力[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 657-666.
[3] 徐坤,陈林,卞莹莹,辛佳宁,杨新国. 猪毛蒿根水浸提液对4种冰草种子萌发和幼苗生长的化感作用[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 574-584.
[4] 吕学思,任梓铭,张栋,夏宜平. 鸢尾蒜种子无菌萌发及鳞茎形成[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 296-305.
[5] 曹丽雯,支肖,戴嘉禾,于宁宁,陈怡倩,叶立新,陈利萍,徐礼根. 蛛网萼未成熟种子培养与离体繁殖[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 157-163.
[6] 金蓉,谢文华,陈杰标,王念晨,项白雪,王岳,曹锦萍. 超声辅助热水提取对铁皮石斛水溶性多糖得率和结构的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 196-204.
[7] 黄文城, 张林, 叶大鹏, TAYLOR Alan George. 鸭茅状摩擦禾种子的物理力学特性[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 507-514.
[8] 张贵,张园园,田永伟,赵晓军,张光,周洪友,景岚,赵君. 向日葵黄萎病种子带菌研究[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 41-48.
[9] 冯佳胤,朱敏,何艳. 土壤主要还原转化过程中微生物功能基因多样性研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 663-675.
[10] 王昊一,李宇玲,朱乐,蒋立希. 油菜种子休眠性对脂肪酸积累的影响及其分子机制[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 397-403.
[11] 周军,丁文捷,朱学军,曹军义,牛雪明. 基于机器视觉的不同湿度下杏鲍菇原基形成速率评估(英文)[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 262-272.
[12] 赵宁, 徐志然, 曲斌, 胡晓辉. 外源γ-氨基丁酸对盐碱胁迫下甜瓜种子萌发的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 40-46.
[13] 周金华,赖庆辉,高筱钧. 滚轮圆刷式三七精密排种器的仿真分析与试验验证[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 509-516.
[14] 谢晓梅,廖敏,华嘉媛,陈娜,张楠,徐培智,解开治,徐昌旭,刘光荣. 钢渣对亚铁离子和硫离子的吸附-解吸特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 465-475.
[15] 陈林, 杨新国, 李学斌, 宋乃平*. 中间锦鸡儿茎叶水浸提液对4种农作物种子萌发和幼苗生长的化感作用[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 41-48.