|
|
Detection of small fruit target based on improved DenseNet |
Li-feng XU( ),Hai-fan HUANG,Wei-long DING,Yu-lei FAN |
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China |
|
|
Abstract An improved fruit detection framework based on DenseNet was proposed aiming at the problem that small fruit target detection always obtains low accuracy in natrual environment. A multi-scale feature extraction module was built with DenseNet. A feature pyramid structure was used in dense blocks at different scales of DenseNet in order to strength the network layer feature reuse. Low-level features with high resolution and high-level features with high semantics were combined to achieve accurate localization and prediction of the existence of small fruits. Soft non-maximum suppression (Soft-NMS) algorithm was introduced to avoid the case that detection boxes were mistakenly removed in the clustered fruit structure. In three datasets of apple, mango and almond, the detection speed came up to 40 FPS, and the F1 score reached 0.920, 0.928 and 0.831 with the proposed framework. The detection efficiency and accuracy were improved compared with the commonly used Faster R-CNN network.
|
Received: 02 September 2020
Published: 09 March 2021
|
|
Fund: 国家自然科学基金资助项目(61571400,61702456);浙江省自然科学基金资助项目(LY18C130012) |
基于改进DenseNet的水果小目标检测
针对自然环境中小目标水果的检测精度普遍较低的问题,提出基于DenseNet改进的水果目标检测框架. 构建以DenseNet为核心的多尺度特征提取模块,在DenseNet不同层级的稠密块中建立特征金字塔结构,加强网络层特征复用. 结合低层特征的高分辨率和高层特征的高语义性,实现准确定位和预测小目标水果存在的目的. 引入软阈值非极大值抑制(Soft-NMS)算法,改善簇状果实结构中检测框被误剔除的情况. 与常用的Faster R-CNN网络相比,所提出的框架在苹果、芒果和杏3个数据集中的平均检测速度大于40 FPS,F1值分别为0.920、0.928、0.831,实现了检测效率及精度的提升.
关键词:
DenseNet,
深度学习,
水果小目标检测,
特征金字塔网络 (FPN),
软阈值非极大值抑制 (Soft-NMS)
|
|
[1] |
NUSKE S, ACHAR S, BATES T, et al. Yield estimation in vineyards by visual grape detection [C]// 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011: 2352-2358.
|
|
|
[2] |
PAYNE A B, WALSH K B, SUBEDI P P, et al Estimation of mango crop yield using image analysis: segmentation method[J]. Computers and Electronics in Agriculture, 2013, 91: 57- 64
doi: 10.1016/j.compag.2012.11.009
|
|
|
[3] |
INKYU S, ZONGYUAN G, FERAS D, et al Deep fruits: a fruit detection system using deep neural networks[J]. Sensors, 2016, 16 (8): 1222
doi: 10.3390/s16081222
|
|
|
[4] |
GIRSHICK R, DONAHUE J, DARRELL T, et al Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (1): 142- 158
|
|
|
[5] |
EVERINGHAM M, GOOL L V, WILLIAMS C K I, et al The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88 (2): 303- 338
doi: 10.1007/s11263-009-0275-4
|
|
|
[6] |
UIJLINGS J R R, SANDE K E A V D, GEVERS T, et al Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104 (2): 154- 171
doi: 10.1007/s11263-013-0620-5
|
|
|
[7] |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
|
|
|
[8] |
BARGOTI S, UNDERWOOD J. Deep fruit detection in orchards [C]// 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 3626-3633.
|
|
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
|
|
[10] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [J/OL]. [2020-08-16]. https://arxiv.org/abs/1409.1556.
|
|
|
[11] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
|
|
[12] |
曾平平, 李林升 基于卷积神经网络的水果图像分类识别研究[J]. 机械设计与研究, 2019, 35 (1): 23- 26 ZENG Ping-ping, LI Lin-sheng Classification and recognition of common fruit images based on convolutional neural network[J]. Machine Design and Research, 2019, 35 (1): 23- 26
|
|
|
[13] |
薛月菊, 黄宁, 涂淑琴, 等 未成熟芒果的改进YOLOv2识别方法[J]. 农业工程学报, 2018, 34 (7): 173- 179 XUE Yue-ju, HUANG Ning, TU Shu-qin, et al Immature mango detection based on improved YOLOv2[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (7): 173- 179
doi: 10.11975/j.issn.1002-6819.2018.07.022
|
|
|
[14] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7263-7271.
|
|
|
[15] |
WAN S, GOUDOS S Faster R-CNN for multi-class fruit detection using a robotic vision system[J]. Computer Networks, 2020, 168: 107036
doi: 10.1016/j.comnet.2019.107036
|
|
|
[16] |
MAI X, ZHANG H, JIA X, et al Faster R-CNN with classifier fusion for automatic detection of small fruits[J]. IEEE Transactions on Automation Science and Engineering, 2020, PP (99): 1- 15
|
|
|
[17] |
SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training very deep networks [C]// Advances in Neural Information Processing Systems. Montreal: Curran Associates, 2015: 2377-2385.
|
|
|
[18] |
LARSSON G, MAIRE M, SHAKHNAROVICH G. Fractalnet: ultra-deep neural networks without residuals [J/OL]. [2020-08-16]. https://arxiv.org/abs/1605.07648.
|
|
|
[19] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
|
|
[20] |
LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
|
|
|
[21] |
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression [C]// 18th International Conference on Pattern Recognition. Hong Kong: IEEE, 2006, 3: 850-855.
|
|
|
[22] |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: improving object detection with one line of code [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5561-5569.
|
|
|
[23] |
MATHIAS M, BENENSON R, TIMOFTE R, et al. Handling occlusions with franken-classifiers [C]// Proceedings of the IEEE International Conference on Computer Vision. Sydeny: IEEE, 2013: 1505-1512.
|
|
|
[24] |
NING C, MENGLU L, HAO Y, et al. Survey of pedestrian detection with occlusion [J/OL]. Complex and Intelligent Systems. https://doi.org/10.1007/s40747-020-00206-8
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|