Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Automatic Technology, Telecommunication Technology     
Equivalent method of GaAs PHEMT MMIC for thermal simulation
XU Xiu qin, MO Jiong jiong, WANG Zhi yu, SHANG Yong heng,GUO Li li, YU Fa xin
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1388KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An equivalent method for thermal characterizing of GaAs PHEMT on chip level was proposed in order to evaluate the thermal characteristics of GaAs PHEMT MMIC. A chip-level thermal simulation model was established by introducing equivalent structure of PHEMT and considering the thermal dissipation effect contributed by chip layout and vias. The model can keep the original lateral thermal distribution of transistors, substantially simplify the mesh of the simulation model, and effectively enhance the accuracy and speed of peak temperature simulation for transistors on chip level. Then a GaAs PHEMT MMIC power amplifier and a GaAs PHEMT MMIC driver amplifier were modeled and simulated in ANSYS ICEPAK as examples. Infrared thermography was applied to map the temperature distribution of the two MMICs. The simulated peak temperatures accorded with the measured ones. The peak temperature difference between the measurement and the thermal simulation was within 2% by applying the proposed thermal analysis method.



Published: 28 October 2016
CLC:  TN 7  
Cite this article:

XU Xiu qin, MO Jiong jiong, WANG Zhi yu, SHANG Yong heng,GUO Li li, YU Fa xin. Equivalent method of GaAs PHEMT MMIC for thermal simulation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 2002-2008.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.10.022     OR     http://www.zjujournals.com/eng/Y2016/V50/I10/2002


芯片级PHEMT热特性等效方法

为了准确估计砷化镓赝配高电子迁移率晶体管(PHEMT)的单片微波集成电路(MMIC)的热特性,提出芯片级PHEMT的热特性等效方法.该方法通过PHEMT管芯结构等效,引入芯片版图和过孔的热扩散效应,建立芯片级热仿真模型,可以在不改变管芯横向热分布的情况下,大幅简化仿真模型的网格,有效提高芯片级管芯峰值温度的仿真精度和仿真速度.基于该热特性等效方法,在ANSYS ICEPAK中对一颗GaAs PHEMT MMIC(单片微波集成电路)功率放大器芯片和一颗GaAs PHEMT MMIC驱动放大器芯片进行建模和仿真.运用红外热成像仪对两颗芯片温度进行实测,仿真与实测的芯片PHEMT峰值温度具有良好的一致性.基于该芯片级PHEMT热特性等效方法可知,芯片热仿真所得的峰值温度与实测结果的误差控制在2%之内.

[1] PARKER A E. Broadband characterization of FET selfheating [J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(7): 2424-2429.
[2] VASILESKA D, HOSSAIN A, GOODNICK S M. The interplay of self heating effects and static Rtf in nanowire transistors [C]∥ Silicon Nanoelectrnics Workshop. Honolulu: [s.n.], 2012: 12.
[3] CAMARCHIA V, CAPPELLUTI F, PIROLA M, et al. Self consistent electrothermal modeling of class A, AB and B power GaN HEMTs under modulated RF excitation [J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(9): 1824-1831.
[4] WANG X, HU W, CHEN X, et al. The study of selfheating and hotelectron effects for AlGaN/GaN doublechannel HEMTs [J]. IEEE Transactions on ElectronDevices, 2012, 59(5): 1393-1401.
[5] FATTORINI A P, TARAZI J, MAHON S. Channel temperature estimation in GaAs FET devices[C] ∥ 2010 IEEE MTTS International Microwave Symposium Digest (MTT). Anaheim: IEEE, 2010: 320-323.
[6] FRANCIS D, WASSERBAUER J, FAILI F, et al. GaN HEMT Epilayers on diamond substrates [C]∥ Proceeding CS MANTECH. Austin: [s. n.], 2007: 14-17.
[7] MENOZZI R, UMANAMEMBRENO G A, NENER B D, et al. Temperaturedependent characterization of AlGaN/GaN HEMTs: thermal and source/drain resistances [J]. IEEE Transactions on Device and Materials Reliability, 2008, 8(2): 255-264.
[8] HORCAJO S M, WANG A, ROMERO M F, et al. Simple and accurate method to estimate channel temperature and thermal resistance in AlGaN/GaN HEMTs [J]. IEEE Transactions on Electron Devices, 2013,60(12): 4105-4111.
[9] DARWISH A M, BAYBA A, HUNG H A. Utilizing diode characteristics for GaN HEMT channel temperature prediction [J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 3188-3192.
[10] BERTOLUZZA F, DELMONTE N, MENOZZI R, et al. Threedimensional finite element thermal simulation of GaNbased HEMTs [J]. Microelectron Reliability, 2009, 49(5): 468-473.
[11] AUBRY R, JACQUET J C, WEAVER J, et al. SThM temperature mapping and nonlinearthermalresistance evolution with bias on AlGaN/GaN HEMT devices [J]. IEEE Transactions on Electron Devices, 2007, 54(3): 385-390.
[12] DARWISH A M, BAYBA A J, KHORSHID A, et al. Calculation of the nonlinear junction temperature for semiconductor devices using linear temperature values [J]. IEEE Transactions on Electron Devices, 2012,59(8): 2123-2128.
[13] ZHAO M, LIU X, ZHENG Y, et al. Thermal analysis of AlGaN/GaN highelectronmobility transistors by infrared microscopy [J]. Optics Communications, 2013, 291: 104-109.
[14] ZHANG G, FENG S, ZHANG Y, et al. Study on the chiplevel thermal nonuniformity evaluation of semiconductor devices [C] ∥ 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits. Suzhou: IEEE, 2009: 541-544.
[15] PETROSYANTS K O, TORGOVNIKOV R A. Electrothermal modeling of trenchisolated SiGe HBTsusing TCAD [C] ∥ 2015 31st Thermal Measurement, Modeling and Management Symposium. San Jose: IEEE, 2015: 172-175.
[16] YUAN L, WANG W, LEE K B, et al. The temperature dependent TCAD and SPICE modeling of ALGaN/GaN HEMTs [C]∥ 2013 IEEE 5th International Nanoelectronics Conference. Singapore: IEEE, 2013.
[17] ZHANG Y, FENG S, ZHU H, et al. Assessment of pulse condition effects on reliability in GaNbased high electron mobility by transient temperature measurements [J]. Journal of Applied Physics, 2013, 114(9): 094-516.
[18] LEE W S, HAN I Y, YU J, et al. Thermal characterization of thermally conductive underfill for a flipchip package using novel temperature sensing technique[C]∥ Proceedings of 6th Electronics Packaging Technology Conference. Singapore: [s.n.], 2004: 47-52.
[19] FLEISCHER A S, CHANG L, JOHNSON B C. The effect of die attach voiding on the thermal resistance of chip level packages [J]. Microelectronics Reliability, 2006, 46(5): 794-804.
[20] LEE W S, BYUN K Y. The availability of the thermal resistance model in flipchip packages [C]∥ International Conference on Electronic Materials and Packaging. Daejeon: IEEE, 2007: 15.
[21] KANDASAMY R, MUJUMDAR A S. Thermal analysis of a flip chip ceramic ball grid array (CBGA) package [J]. Microelectronics Reliability, 2008, 48(2):261-273.
[22] ASGHARI T A. PCB thermal via optimization using design of experiments [C]∥ The 10th Intersociety Conference on Thermal and Thermalmechanical Phenomena in Electronics Systems. San Diego: [s. n.], 2006:224-228.
[23] BOUKHANOUF R, HADDAD A. A CFD analysis of an electronics cooling enclosure for application in telecommunication systems [J]. Applied Thermal Engineering, 2010, 30(16): 2426-2434.
[24] SIMMS R J T, POMEROY J W, UREN M J, et al. Channel temperature determination in highpower AlGaN/GaN HFETs using electrical methods and Raman spectroscopy [J]. IEEE Transactions on ElectronDevices, 2008, 55(2): 478-482.
[25] LI L, COCCIOLI R, NARY K, et al. Multiscale thermal analysis of GaAs RF device [C]∥ IEEE 21st Annual Semiconductor Thermal Measurement and Management Symposium. San Jose: IEEE, 2005: 259-263.
[26] DARWISH A M, BAYBA A J, HUNG H A. Accurate determination of thermal resistance of FETs [J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(1): 306-313

[1] TONG Hua-qing, XU Shi-yi, HUANG Jian-hua, MO Jiong-jiong, WANG Zhi-yu,YU Fa-xin. Low noise amplifier module with active bias using system in package technology[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 834-840.
[2] XU Hui, XU Xiu qin, MO Jiong jiong, WANG Zhi yu, SHANG Yong heng, WANG Li ping, YU Fa xin. Design of microstrip bandpass filter with enhanced stopband rejection based on coupled-mode theory[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 177-183.
[3] ZHANG Sheng zhou, SUN Ling ling, WEN Jin cai, LIU Jun. High performance D-band passive mixer in dual drain/resistive modes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1815-1822.
[4] FENG Xia, ZHONG Xiao-jian, XU Qun-wei, CHEN Guo-zhu. Novel DC bus voltage control strategy for three-phase four-wire active power filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1312-1317.
[5] ZHAN Yong-zheng, WANG Guang-qing. Performance analysis and power optimization of piezoelectric #br# vibration energy harvester[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1248-1253.
[6] ZHAO Yan, SUN Ling-ling, TAN Nian-xiong. Non-uniform synchronous sampling clock generating method used in harmonics measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(10): 1857-1862.
[7] ZHU Fu-cheng, LI Feng-bao, LEI Xiao-yan, GUO Feng. Stochastic resonance induced by multiplicative and additive noise in
time-delayed bistable system
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 88-93.
[8] BAI Yang,YANG Jia-qiang,ZENG Zheng. Design method of high performance digital low-pass filter
in harmonic detection algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 169-173.
[9] YIN Xi-zhen, MA Cheng-yan, YE Tian-chun, XIAO Shi-mao, YU Yun-feng. Fractional-N frequency synthesizer for high sensitivity GNSS receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 70-76.
[10] WANG Peng-jun, LI Kun-peng, MEI Feng-na, CHEN Yao-wu. Design of ternary adiabatic counter on switch-level[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1502-1508.
[11] XIE Chuan, ZHANG Jing, WANG Zhi-qiang, CHEN Guo-zhu. Digital PLL with fixed number of sampling points for repetitive
control algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 789-793.
[12] HUANG Xiao-hua,CHEN Li-jia,ZHOU Jin-fang,CHEN Kang-sheng. Miller effect analysis and noise optimization of CMOS low noise amplifier[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(3): 424-428.