Information Engineering |
|
|
|
|
Design of microstrip bandpass filter with enhanced stopband rejection based on coupled-mode theory |
XU Hui, XU Xiu qin, MO Jiong jiong, WANG Zhi yu, SHANG Yong heng, WANG Li ping, YU Fa xin |
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract A microstrip bandpass filter with enhanced stopband rejection was designed based on the temporal coupled-mode theory in order to realize the signal isolation between transmitter and receiver (TR) channels in radio frequency (RF) transceiver systems. The filter consisted of two microstrip resonators, one supports an odd and an even mode, and the other supported an even mode. These three resonant modes coupled with each other, producing a transmission zero at low frequency below the passband, and two transmission zeros at high frequency above the passband. High frequency selection, passband flatness, and good stopband rejection above the passband were achieved. A C-band triple-mode microstrip bandpass filter was taken as an example. The characteristics of the filter with enhanced high-frequency stopband rejection can be accurately calculated by using temporal coupled-mode theory, and the coupling relationship among the three resonant modes can be obtained. The filter structure which satisfies the coupling relationship can be finished by using electromagnetic eigenmode simulation. The proposed filter was fabricated and tested. The test results matched the theoretical prediction well. Results show that the filter can be effectively applied in the isolation between TR channels in RF transceiver systems. The temporal coupledmode theory can highly improve the design efficiency of filters with multimode coupling, which can achieve the required filter response of the system with high speed.
|
Published: 01 January 2017
|
|
|
Cite this article:
XU Hui, XU Xiu qin, MO Jiong jiong, WANG Zhi yu, SHANG Yong heng, WANG Li ping, YU Fa xin. Design of microstrip bandpass filter with enhanced stopband rejection based on coupled-mode theory. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 177-183.
|
基于耦合模理论的强阻带抑制带通滤波器设计
为了实现射频收发系统中相邻通道间的信号收发隔离,运用时域耦合模理论设计具有较强的阻带抑制的微带带通滤波器.该滤波器由1个奇偶双模微带谐振单元和1个偶模微带谐振单元构成.3个谐振模式相互耦合,在通带低频侧形成1个传输零点,在高频侧形成2个传输零点.可以实现较高的频率选择性和带内平坦度,在通带的高频侧实现较强的阻带抑制.以C波段的三模耦合微带带通滤波器为例,通过时域耦合模理论对滤波器的滤波特性进行准确计算,得到各个谐振模式之间的耦合关系.通过特征模电磁仿真完成满足该耦合关系的滤波器结构设计.对该滤波器进行实物加工与测试.测试结果与理论计算结果吻合良好.结果表明,该滤波器可以有效地应用于射频收发系统收发通道间的隔离.时域耦合模理论可以实现多模耦合滤波器的高效设计,快速得到系统所需的滤波特性.
|
|
[1] LI Jian, HUANG Yongjun, WEN Guangjun, et al. Compact and highselectivity microstrip bandpass filter using twostage twistmodified asymmetric splitring resonators [J]. IEEE Electronics Letters, 2015, 51(8): 635-637.
[2] CHEN Chifeng, CHANG Shengfa, TSENG B H. Design of compact microstrip septband bandpass filter with flexible passband allocation [J]. IEEE Microwave and Wireless Components Letters, 2016, 26(5): 346-348.
[3] XU Jin, WU Wen, MIAO Chen. Compact and sharp skirts microstrip dualmode dualband bandpass filterusing a single quadruplemode resonator (QMR) [J]. IEEE Transactions Microwave Theory Technology, 2013, 61(3): 1104-1113.
[4] 肖飞,唐小宏,王玲,等.基于1/2和1/4波长谐振器的三阶微带带通滤波器[J].中国科技论文在线,2011,6(7): 536-538.
XIAO Fei, TANG Xiaohong, WANG Ling, et al. Compact microstrip bandpass filter based on hybrid halfand quarterwavelength resonators [J]. Science Paper Online, 2011,6(7): 536-538.
[5] 雷涛,向天宇,张正平.新型交叉耦合双模宽带带通滤波器设计[J].现代雷达,2015,37(1): 67-73.
LEI Tao, XIANG Tianyu, ZHANG Zhengping. Novel crosscoupled dualmode wideband bandpass filter [J]. Modern Radar, 2015,37(1): 67-73.
[6] ZHANG Songbai, ZHU Lei. Compact and highselectivity microstrip bandpass filters using triple/quadmode stubloaded resonators [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(10): 522-524.
[7] CHU Q X, FAN L. A compact bandpass filter with source-load coupling by using short-circuited coupled lines between ports [J]. Journal of Electromagnetic Waves and Applications, 2010, 24(11): 14931500.
[8] WANG L, GUAN B R. A novel high selectivity dualband bandpass filter with inductive sourceload coupling [J]. Journal of Electromagnetic Waves and Applications, 2012, 26(13): 1734-1740.
[9] LUO X, QIAN H, MA J G, et al. Wideband bandpass filter with excellent selectivity using new CSRRbased resonator [J]. Electronic Letters, 2010, 46(20): 13901391.
[10] ZHANG Xiaochuan, YU Zhiyuan, XU Jun. Design of microstrip dualmode filters based on sourceload coupling [J]. IEEE Microwave and Wireless Components Letters, 2008, 18(10): 677-679.
[11] SHEN Wei, SUN Xiaowei, YIN Wen yan. A novel microstrip filter using three-mode stepped impedance resonator (TSIR) [J]. IEEE Microwave and Wireless Components Letters, 2009, 19(12): 774-776.
[12] LEE J R, CHO J H, YUN S W. New compact candpass filter using microstrip λ/4resonators with open stub inverter [J]. IEEE Microwave and Guided Wave Letters, 2000, 10(12): 526-527.
[13] AMARI S, ROSENBERG U, BORNEMANN J.Adaptive synthesis and design of resonator filters with source/loadmulti resonator coupling [J]. IEEE Transactions on Microwave Theory and Techniques, 2002,50(8): 1969-1978.
[14] ROSENBERG U, AMARI S. Novel coupling schemes for microwave resonator filters [J]. IEEE Transactions Microwave Theory Technology, 2002, 50(12): 2896-2902.
[15] LIAO C K, CHI P L, CHANG C Y. Microstrip realization of generalized Chebyshev filters with boxlike coupling schemes [J]. IEEE Transactions Microwave Theory Technology, 2007, 55(1): 147-153.
[16] SUH W, WANG Zheng, FAN Shanhui. Temporal coupled-mode theory and the presence of nonorthogonal modes in lossless multimode cavities [J]. IEEE Journal of Quantum Electronics, 2004, 40(10):1511-1518.
[17] YU Faxin, WANG Yang, WANG Zhi yu, et al. Temporal coupled-mode theory and the combined effect of dual orthogonal resonant modes in microstrip bandpass filters [J]. IEEE Transactions Microwave Theory Technology, 2015, 63(2): 403413.
[18] WANG Lei, GUAN Boran. Design of high selectivity triband bandpass filter with wide upper stopband [J]. International Journal of RF and Microwave ComputerAided Engineering, 2013, 23(3): 328-333.
[19] MO S G, YU Z Y, ZHANG L. Design of triplemode bandpass filter using improved hexagonal loop resonator [J]. Progress in Electromagnetics Research, 2009, 96(4): 117-125.
[20] ZHANG Song bai, ZHU Lei, LI Rui, et al. Compact triplemode microstrip bandpass filter [J]. Electronics Packaging Technology Conference (EPTC), 2012,48(11): 641-644.
[21] LEE K C, SU H T, HALDAR M K. A novel compact triplemode resonator for microstrip bandpass filter design [C]∥ Microwave Conference Proceedings (APMC). Yokohama: [s. n.], 2010: 1871-1874.
[22] SRISATHIT K, WORAPISHET A, SURAKAMPONTORN W. Design of triplemode ring resonator for wideband microstrip bandpass filters [J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2867-2877.
[23] BALALEM A, ALI A R, AMARI S, et al. Realization of a microstrip triplemode bandpass filter using a squareloop resonator [C]∥ Microwave Symposium Digest. Boston: [s. n.], 2009: 849-852.
[24] SHEN Wei, YIN Wen yan, SUN Xiao wei, et al. Compact substrate integrated waveguide (SIW) transversal filter with triple-mode microstrip resonator[C]∥ Microwave Conference Proceedings (APMC). Yokohama: [s. n.], 2010: 1875-1878.
[25] 杨毅民.三阶带一对传输零点的LTCC带通滤波器[J].空间电子技术,2012,9(4): 113-122.
YANG Yimin. A thirdorder LTCC bandpass filter with two finite transmission zeros [J]. Space Electronic Technology, 2012, 9(4): 113-122. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|