Please wait a minute...
J4  2010, Vol. 44 Issue (10): 1955-1961    DOI: 10.3785/j.issn.1008-973X.2010.10.019
    
Shaking table model test of subway station structure under
far field and near field ground motion
CHEN Guo-xing1, ZUO Xi1, WANG Zhi-hua1, DU Xiu-li2, SUN Tian1
1. Institute of Geotechnical Engineering, Nanjing University of Technology, Nanjing 210009, China;
2. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100022, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A model structure of threestory and threespan subway station at liquefiable ground was analyzed considering the far field and the near field ground motion based on a metro station in Nanjing. Problems existed in the largescale shaking table model test were discussed and the relevant solutions were proposed, which included the development of flexible box and dynamic data acquisition system, as well as the determination of structure and soil’s similarity criterion. Parameters such as acceleration, horizontal displacement, strain response of the station, and the pore water pressure, acceleration, seismic subsidence of soil and dynamic soil pressure on the sidewall were measured. Results show that the soil under near field and far field ground motion presents an amplification phenomenon with low frequency. However, the degree of amplification effect and the frequency range appear to be a great difference for the distinction of spectrum characteristics between near field and far field. The fundamental frequency of shallow soil is close to the dominant frequency of the motion when it comes to the far field motion; the soil’s amplification effect seems to be significant. The existence of the underground structure has remarkable influence on the seismic dynamic characteristics of adjacent soil.



Published: 01 October 2010
CLC:     
  TU 435  
Cite this article:

CHEN Guo-Xin, ZUO Xi, WANG Zhi-Hua, DU Xiu-Li, SUN Tian. Shaking table model test of subway station structure under
far field and near field ground motion. J4, 2010, 44(10): 1955-1961.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.10.019     OR     http://www.zjujournals.com/eng/Y2010/V44/I10/1955


地铁车站结构近远场地震反应特性振动台试验

以南京某地铁车站为研究背景,考虑近、远场地震动作用,研究可液化场地上三跨三层地铁车站结构大型振动台模型试验中存在的问题和解决方法,包括柔性模型箱、动态数据采集系统的研制和结构模型、地基土相似准则的确定.测试地铁车站结构的加速度、水平位移、应变反应和地基土孔隙水压力、加速度、震陷及作用于侧墙的动土压力反应.结果表明:在近、远场地震动作用下地基土呈现低频放大现象,由于近、远场地震动的频谱特性不同,放大效应的程度和频率范围差异较大;在远场强地震动作用下地表浅层土的基频与远场地震动的主频接近,地表浅层土的地震动放大效应显著;地下结构的存在显著影响周边土体的地震动特性.

[1] PALO N, ROBERTO P, STEFANIA P, et al. Large scale soilstructure interaction experiments on sand under cyclic loading [C]∥ Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand: New Zealand Society for Earthquake Engineering, 2000: 2047-2055.
[2] IWATATE T, KOBAYASHI Y, KUSU H, et al. Investigation and shaking table tests of subway structures of the HyogokenNanbu earthquake [C]∥Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand: New Zealand Society for Earthquake Engineering, 2000: 1129-1135.
\
[3\] TAMARI Y, TOWHATA I. Seismic soilstructure interaction of cross sections of flexible underground structures subjected to soil liquefaction \
[J\]. Soil and Foundation, 2003, 43(2): 69-87.
\
[4\] 杨林德,季倩倩,郑永来,等.软土地铁车站结构的振动台试验\
[J\].现代隧道技术,2003,40(1): 7-11.
YANG Linde, JI Qianqian, ZHENG Yonglai, et al. Shaking table test on metro station structures in soft soil \
[J\]. Modern Tunnelling Technology, 2003, 40(1): 7-11.
[5] 陈国兴,庄海洋,杜修力,等.土地铁车站动力相互作用的大型振动台模型试验研究[J].地震工程与工程振动,2007,27(2): 171-176.
CHEN Guoxing, ZHUANG Haiyang, DU Xiuli, et al. Analysis of largescale shaking table test of dynamic soilsubway station interaction [J]. Earthquake Engineering and Engineering Vibration, 2007, 27(2): 171-176.
\
[6\] 陈国兴,庄海洋,程绍革,等.土地铁隧道动力相互作用的大型振动台试验:试验方案设计\
[J\].地震工程与工程振动,2006, 26(6): 178-183.
CHEN Guoxing, ZHUANG Haiyang, CHENG Shaoge, et al. A largescale shaking table test for dynamic soilmetro tunnel interaction: designs of test \
[J\]. Earthquake Engineering and Engineering Vibration, 2006, 26(6): 178-183.
\
[7\]  陈国兴,庄海洋,杜修力,等.土地铁隧道动力相互作用的大型振动台试验:试验结果分析\
[J\].地震工程与工程振动,2007,27(1): 164-170.
CHEN Guoxing, ZHUANG Haiyang, DU Xiuli, et al. A largesize shaking table test for dynamic soilmetro tunnel interaction: analysis on the test results \
[J\]. Earthquake Engineering and Engineering Vibration, 2007, 27(1): 164-170.
[8] 陈国兴,王志华,左熹,等.振动台试验叠层剪切型土箱的研制[J].岩土工程学报,2010,32(1): 89-97.
CHEN Guoxing, WANG Zhihua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97.
[9] 韩晓健,左熹,陈国兴.基于虚拟仪器技术的振动台模型试验98通道动态信号采集系统研制[J].防灾减灾工程学报,已录用.
HAN Xiaojian, ZUO Xi, CHEN Guoxing. 98 channels’ dynamic signal acquisition system development for shaking table test based on virtual instrument technology [J]. Journal of Disaster Prevention and Mitigation Engineering, in press.
[10] PHILIP J M. Shaking table scale model tests of nonlinear soilpilesuperstructure interaction in soft clay [D]. Berkeley: University of California, 1998.
[11] 左熹,杨树才,陈国兴.地铁车站结构非线性地震损伤演化规律分析[J].工程抗震与加固改造,2010,32(1): 110-116.
ZUO Xi, YANG Shucai, CHEN Guoxing. Analysis on evolution of nonlinear seismic damage of subway station structure [J]. Earthquake Resistant Engineering and Retrofitting, 2010, 32(1): 110-116.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[10] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.