Please wait a minute...
J4  2010, Vol. 44 Issue (10): 1944-1949    DOI: 10.3785/j.issn.1008973X.2010.10.017
    
Rupture and mechanics behavior of sandstone affected by
medium strain rate
YIN Xiao-tao1, DING Wei-hua2, LI Chun-guang1, WANG Shui-lin1
1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese
Academy of Sciences, Wuhan 430071, China; 2. Institute of Water Resources and HydroElectric Engineering,
Xi’an University of Technology,Xi’an 710048,China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking sandstone as object, a virtual specimen and uniaxial compression test of sandstone was conducted under particle flow code with its embedded fish language according to the experimental results of sandstone’s grain analysis, compression strength, tensile strength and its cohesion or friction angle tests. The uniaixal compression tests with seven kinds of strain rate such as 10-3,5×10-3,10-2,2×10-2,5×10-2,10-1,2×10-1 s-1 were designed to analyze the effect of strain rate. The influences of rupture process, crack number and propagation, curve of stress and strain, energy transformation derived from strain rate were analyzed. Results show that the increase of strain rate ruins the advantageous shear zone’s development, which makes the shear zone expand with the same velocity, and the material failure plane changes from shearing failure to cone breakage. The strain rate mesoenhances the material mechanics and deformation features with the uplifting of stressstrain curve’s slope and peak value. Total cracks increase with the decreasing tensile crack and the increasing shearing crack. The boundary energy enhances, so the friction energy, kinetic energy and strain energy monotonically increase, which illustrates the increase of shear crack, violent failure and rockburst of side.



Published: 01 October 2010
CLC:     
  TU 443  
Cite this article:

YIN Xiao-Chao, DING Wei-Hua, LI Chun-Guang, WANG Shui-Lin. Rupture and mechanics behavior of sandstone affected by
medium strain rate. J4, 2010, 44(10): 1944-1949.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2010.10.017     OR     http://www.zjujournals.com/eng/Y2010/V44/I10/1944


中等应变速率对砂岩破坏形态和力学性质的影响

以砂岩为研究对象,根据砂岩的颗粒分析试验、抗压强度、抗拉强度和强度试验结果,在颗粒流程序下,通过fish语言编程,虚拟实现了砂岩数值试件和单轴压缩试验,设计10-3、5×10-3、10-2、2×10-2、5×10-2、10-1、2×10-1 s-1这7个应变率下的单轴压缩试验.分析应变率对砂岩破裂形态、裂纹数量和扩展、应力应变曲线和能量转换的影响.结果发现:应变率的增加破坏了优势剪切带的发展,使得剪切带等速发展,材料由剪切破坏向锥形破坏发展;材料的力学性能表现出极大的伪增强,应力应变曲线上扬、斜率提高、峰值提高,峰后曲线震荡剧烈;裂缝数量增多,其中拉裂缝减少,剪切裂缝增多;边界输入能量增加,造成加载过程中材料的摩擦能、动能和应变能单调增大,摩擦能增大说明剪切裂缝增多,动能增大说明破坏剧烈,应变能增大说明更容易产生岩爆现象.

[1] JANACH W. The role of bulking in brittle failure of rock under rapid compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1976, 13(2): 177-186.
[2] LAJTAI E Z, SCOTT D E J, CARTER B J. Effect of strain rate on rock strength [J]. Rock Mechanics and Rock Engineering, 1991, 24(2): 99-109.
[3] ZHAO J, LI H B, WU M B, et al. Dynamic uniaxial compression tests on granite [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(2): 273-277.
[4] CHONG K P, HOYT P M, SMITH J W, et al. Effects of strain rate on oil shale fracturing [J]. International Journal of Rock Mechanics and Mining Sciences, 1980, 17(1): 35-43.
[5] BLANTON T L. Effect of strain rate from 10-2 to 10-1 sec in triaxial compression tests on three rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 1981, 18(1): 47-62.
[6] SWAN G, COOK J, BRUCE S, et al. Strain rate effect in Kimmeridge Bay Shale [J]. International Journal of Rock Mechanics and Mining Sciences, 1989, 26(2): 135-149.
[7] MASUDA K, MIZUTANI H, YAMADA I, et al. Experimental study of strainrate dependence and pressure dependence of failure properties of granite [J]. Journal of Physics of the Earth, 1987, 35(1): 37-66.
[8] KUMAR A. The effect of stress rate and temperature on the strength of basalt and granite [J]. Geophysics, 1968, 33(3): 501-510.
[9] ATKINSON C,COOK J M. Effect of loading rate on crack propagation under compressive stress in a saturated porous material [J]. Journal of Geophysical Research,1993,98(B4): 6383-6395.
[10] 彭芳乐,李福林,李建中,等.加载速率变化条件下砂土的黏塑特性及本构模型[J].岩石力学与工程学报,2008,27(8):1576-1585.
PENG Fangle,LI Fulin,LI Jianzhong, et al. Viscoplastic Behaviors and constitutive modeling of sands under change of loading rates [J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(8): 1576-1585.
[11] 马少鹏,周辉.岩石破坏过程中试件表面应变场演化特征研究[J].岩石力学与工程学报,2008,27(8): 1667-1673.
MA Shaopeng,ZHOU Hui. Surface strain field evolution of rock specimen under failure process [J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(8): 1667-1673.
[12] 王金安,焦申华,谢广辉.综放工作面开采速率对围岩应力环境影响的研究[J].岩石力学与工程学报,2006,25(6): 1118-1124.
WANG Jinan, JIAO Shenhua, XIE Guanghui. Study on influence of mining rate on stress environment in surrounding rock of mechanized top caving mining face [J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(6): 1118-1124.
[13] 刘善军,吴立新,王金庆,等.遥感岩石力学(Ⅵ):岩石摩擦滑移特征及其影响因素分析[J].岩石力学与工程学报,2004,23(8): 1247-1251.
LIU Shanjun, WU Lixin, WANG Jinqing, et al. Remote sensing rock mechanics (Ⅵ): features of rock fractionsliding and analysis on its influence factors [J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(8): 1247-1251.
[14] Itasca Consulting Group. PFC2D: particle flow code in 2 dimensions. Minneapolis (MN): Itasca Consulting Group, 1999.
[15] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[10] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.