Please wait a minute...
J4  2010, Vol. 44 Issue (9): 1719-1723    DOI: 10.3785/j.issn.1008-973X.2010.09.015
    
Optimal attitude determination method for
 pico-satellite using solar panels
HAN Ke, JIN Zhong-he, WANG Hao
Department of Information and Electronics Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Solar panels can also be used as coarse sun sensors to increase the pico-satellite system’s redundancy and reliability. This flexible setup is easily sensitive to surrounding light sources as it sees the whole sky, so with the interference of Earths albedo light, it does not show a high accuracy. To improve the performance of satellite attitude measurement in this specific situation, a modified attitude determination method was investigated. According to the actual output of solar panel with the interference of albedo light, the Wahbas problem was re-discussed, and a new loss function for optimal attitude determination was proposed. Also the method to solve the optimal weighted leastsquare function was developed. From simulation, compared with the classic quaternion estimator (QUEST), which is based on Wahbas loss function, the suggested attitude determination method, which is based on the new loss function, shows higher accuracy. Monte Carlo simulation shows that the average attitude error of the suggested method is 17% lower than QUEST, and the standard deviation is 57% lower as well.



Published: 01 September 2010
CLC:     
  V 448.22  
Cite this article:

HAN Ke, JIN Zhong-He, WANG Hao. Optimal attitude determination method for
 pico-satellite using solar panels. J4, 2010, 44(9): 1719-1723.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.09.015     OR     http://www.zjujournals.com/eng/Y2010/V44/I9/1719


基于太阳能电池板的皮卫星最优姿态确定算法

为了提高皮卫星系统的设计冗余和可靠性,太阳能电池板可以复用为粗太阳敏感器.由于具有全空间视场,这一灵活的配置对周边光源有较强的敏感性,因此,在地球反照光干扰下,测量精度不高.在这一特定情况下,研究了改进的姿态确定算法,以提高卫星的姿态测量精度.根据反照光影响下电池板的实际输出情况,重新讨论Wahba问题,提出太阳能电池板定姿的新损失函数,并推导了该函数最小二乘意义下的最优姿态确定方法.与基于Wahba模型常用的四元素估计法(QUEST)相比,该模型的定姿算法具有更高的精度.蒙特卡罗仿真表明:该算法的平均定姿误差比QUEST小17%,误差标准差比QUEST小57%.

[1] HEIDT H, PUIGSUARI J, MOORE A S, et al. Cubesat: a new generation of picosatellite for education and industry lowcost space experimentation [C]∥ 14th Annual AIAA/USU Conference on Small Satellites. Logan, Utah, USA: AIAA/USU, 2000: 113116.
[2] 刘建业,段方,李丹,等.基于太阳电池板与磁强计的小卫星姿态确定算法研究[J].宇航学报,2007,28(1): 218222.
LIU Jianye, DUAN Fang, LI Dan, et al. An algorithm for microsatellite attitude determination using solar panels and magnetometer [J]. Journal of Astronautics, 2007,28(1): 218222.
[3] APPEL P. Attitude estimation from magnetometer and earthalbedocorrected coarse sun sensor measurements [J]. Acta Astronautica, 2005, 56(1/2): 112.
[4] SHUSTER M D, OH S D. Threeaxis attitude determination from vector observations [J]. Journal of Guidance, Control, and Dynamics, 1984,4(1): 7077.
[5] MARKLEY F  L. Attitude determination using vector observations: a fast optimal matrix algorithm [J]. Journal of the Astronautical Sciences, 1993,41(2): 261280.
[6] MORTARI D. ESOQ: A Closeform solution to the Wahaba problem [J]. Journal of the Astronautical Sciences, 1997,45(2): 159204.
[7] MORTARI D. Second estimator for the optimal quaternion [J]. Journal of Guidance, Control, and Dynamics, 2000,23(1): 885888.
[8] WAHBA G. A leastsquare estimate of satellite attitude [J]. SIAM Review, 1965,7(3): 409.
[9] 赵翔宇,金小军,韩柯,等.皮卫星电源系统的设计与仿真[J].浙江大学学报:工学版,2009,43(2):228233.
ZHAO Xiangyu, JIN Xiaojun, HAN Ke, et al. Design and simulation of the power system of picosatellite [J]. Journal of Zhejiang University: Engineering Science, 2009,43(2): 228233.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[3] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[4] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[5] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.