Please wait a minute...
J4  2010, Vol. 44 Issue (5): 942-949    DOI: 10.3785/j.issn.1008-973X.2010.05.018
    
Optimal placements of  actuators in vibration active control for
doublelayer spherical grid shell structures
XIAO Nan, RONG Li, DONG Shi-lin
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The sensitivity of actuator disposed in the members was defined based on the optimization theory of active control with quadratic performance function in order to ascertain the optimal placements and numbers of actuators in the active control for doublelayer spherical grid shell structures. An optimization process to successively delete the insensitive actuators was presented. Meanwhile, a Matlab program was developed. The numerical results for doublelayer spherical grid shell structure show that it is better to lay out the actuators in chords than in diagonal members, as well as in upper chords better than in lower chords. Under satisfying the requirements of restricted structural displacements and control forces of actuators, the farther from structural center the actuators are laid out in upper chords, the more sensitive they’ll be, and it is better to lay out the actuators circularly than radially. The optimal placements of actuators are in the outermost ring of upper chords for doublelayer spherical grid shell structures. Results also show that the effectiveness of active control is apparent under different seismic inputs while the actuators are laid out in the optimal placements.



Published: 19 March 2012
CLC:     
  TU 311.3  
  TU 393.3  
  TU 352.1  
Cite this article:

XIAO Na, RONG Li, DONG Dan-Lin. Optimal placements of  actuators in vibration active control for
doublelayer spherical grid shell structures. J4, 2010, 44(5): 942-949.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.05.018     OR     http://www.zjujournals.com/eng/Y2010/V44/I5/942


双层球面网壳振动主动控制作动器位置优化

为了确定双层球面网壳结构振动控制的作动器最佳布设位置/数目,以主动控制的二次型性能泛函最优控制理论为基础,定义作动器布设的敏感度,提出逐步删除结构中敏感度小的作动器优化过程,并编制相应的作动器优化实现程序.算例表明,对于双层球面网壳结构,作动器布设在上、下弦杆优于腹杆,且布设在上弦优于下弦;在结构位移和作动器的控制力均满足设定的要求下,结构上弦作动器布置距离中心越远其灵敏度越大,环向布置优于径向布置,作动器最佳布设位置在结构上弦的最外圈环向杆件上.算例进一步表明,对于不同的地震动输入,作动器在最佳位置上,相应的主动控制的效果均比较明显.

[1] 任建亭,闫云集,姜节胜.振动控制传感器/作动器的数目和位置优化设计[J].振动工程学报,2001,14(2): 237241.
REN Jianting, YAN Yunji, JIANG Jiesheng. Optimal design method for sensors/actuators placement and numbers in the vibration control of flexible structure system[J]. Journal of Vibration Engineering, 2001, 14(2): 237241.
[2] 刘福强,张令弥.作动器/传感器优化配置的研究进展[J].力学进展,2000,30(4): 506516.
LIU Fuqiang, ZHANG Lingmi. Advance in optimal placement of actuator and sensors[J]. Advances in Mechanics, 2000, 30 (4): 506516.
[3] 孙万泉,李庆斌.随机荷载作用下结构的主动控制的作动器优化配置[J].工程力学,2007, 24(3): 115119.
SUN Wanquan, LI Qingbin. Optimal placement of actuators for structure initiative control under stochastic load[J].Engineering Mechanics, 2007, 24(3): 115119.
[4] 林雪松,周婧,林德新.MATLAB7.0应用集锦[M].北京:机械工业出版社,2006: 317335.
[5] 楼顺天,姚若玉,沈俊霞.MATLAB7.x程序设计[M].2版.西安:西安电子科技大学出版社,2006: 203228.
[6] 李东旭.大型挠性结构分散化振动控制:理论与方法[M].长沙:国防科技大学出版社,2002: 130141.
[7] 欧进萍.结构振动控制:主动、半主动和智能控制[M].北京:科学出版社,2003: 6168.
[8] 易大义,蒋书豪,李有法.数值方法[M].杭州:浙江科学技术出版社,1987: 350360.
[9] XU K, WARNITCHAI P, IGUSA T. Optimal placement and gains of sensors and actuators for feedback control[J]. Journal of Guidance Control and Dynamics, 1994, 17(5): 929934.
[10] 沈聚敏,周锡元,高小旺,等.抗震工程学[M].北京:中国建筑工业出版社,2000: 143158.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[3] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[4] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[5] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[12] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.