Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (9): 1760-1769    DOI: 10.3785/j.issn.1008-973X.2017.09.010
Computer Technology     
Relationship of wing location and helical motion for underwater glider
LIU You1,2, SHEN Qing2, MA Dong-li1, YUAN Xiang-jiang2
1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
2. China Academy of Aerospace Aerodynamics(CAAA), Beijing 100074, China
Download:   PDF(2960KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A mathematical model was constructed to describe the helical motion of underwater glider at steady state. Using the numerical method, the helical motion features of underwater glider were achieved corresponding to five wing locations. Numerical results indicate that the helical motion pattern of underwater glider changes with the wing location. And there is a transitional zone ("watershed" zone) determining the turning direction of underwater glider at steady state. The gliders with wing locations ahead of the zone turn in the same direction of lateral component of lift produced by wing and work in positive helical pattern. However, the gliders with wing locations behind the zone turn in the reverse direction of lateral component of lift produced by wing and work in anti-helical pattern. The glider with wing location within the zone can turn in any of the two directions dependent on its CG (centre of gravity) location. Furthermore, the gliders with wing locations far away from the zone turn faster than those with wing locations near it. The in-lake experiments indicate that wing location can affect the turning direction of helical motion and the percentage error between numerical results and experiment data at steady stage is less than 15%.



Received: 14 December 2016      Published: 25 August 2017
CLC:  TP24  
Cite this article:

LIU You, SHEN Qing, MA Dong-li, YUAN Xiang-jiang. Relationship of wing location and helical motion for underwater glider. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1760-1769.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.09.010     OR     http://www.zjujournals.com/eng/Y2017/V51/I9/1760


水下滑翔机的机翼位置与螺旋运动关系分析

建立水下滑翔机稳态螺旋运动的数学模型,采用数值方法求解该模型,得出对应5个机翼位置的滑翔机螺旋运动特性.结果表明,水下滑翔机螺旋运动的形式随着机翼位置的变化而变化.存在一个过渡性区域("分水岭"区域),当机翼位于这个区域前面时,水下滑翔机转向方向与机翼升力侧向分量方向一致,滑翔机按照正螺旋方式转向;当机翼位于这个区域后面时,水下滑翔机转向方向与机翼升力侧向分量方向相反,滑翔机按照反螺旋方式转向;当机翼位于这个区域内时,滑翔机的转弯方向具有不确定性,并与重心位置有关.无论滑翔机按照何种方式转弯,机翼离这个区域越远,转弯的速率就越高.湖中实验结果表明:机翼位置可以影响螺旋运动的转弯方向,且稳态试验数据与数值理论结果的误差≤ 15%.

[1] STOMMEL H. The slocum mission[J]. Oceanog-raphy, 1989, 2(1):22-25.
[2] WEBB D C, SIMONETTI P J, JONES C P. Slocum:an underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001,26(4):447-452.
[3] SHERMAN J, DAVIS R E, OWENS W B, et al. The autonomous underwater glider "Spray"[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4):437-446.
[4] ERIKSEN C C, OSSE T J, LIGHT R D, et al. Seag-lider:a long range autonomous underwater vehicle foroceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4):424-436.
[5] ALVAREZ A, CAFFAZ A, CAITI A, et al. Fòlaga:a low-cost autonomous underwater vehicle combining glider and AUV capabilities[J]. Journal of Ocean Engineering, 2009, 36(1):24-38.
[6] PHOEMSAPTHAWEE S,LEBOULLUEC M, LAURENS J M, et al. Numerical study on hydrodyn-amic behavior of an underwater glider[C]//ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers. Rotterdam:ASME, 2011:521-526.
[7] ZHANG F, TAN X. Tail-enabled spiraling maneuver for gliding robotic fish[J]. Journal of Dynamic Systems Measurement and Control, 2014, 136(4):041028.
[8] ZHANG F, TAN X. Passivity-based stabilization of underwater gliders with a control surface[J]. Journal of Dynamic Systems Measurement and Control, 2015,137(6):061006.
[9] ISA K, ARSHAD M R, ISHAK S. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control[J]. Ocean Engineering, 2014, 81(2):111-129.
[10] YU J C, ZHANG A Q, JIN W M, et al. Development and experiments of the sea-wing underwater glider[J]. China Ocean Engineering, 2011, 25(4):721-736.
[11] WANG Y H, WANG S X. Dynamic modeling and three-dimensional motion analysis of underwater gliders[J]. China Ocean Engineering, 2009, 23(3):489-504.
[12] WANG S, SUN X, WANG Y, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider[J]. China Ocean Engineering, 2011, 25(1):97-112.
[13] PHOEMSAPTHAWEE S, BOULLUEC M L, LAURENS J M, et al. A potential flow based flight simulator for an underwater glider[J]. Journal of Marine Science and Application, 2013, 12(1):112-121.
[14] LIU Y, SHEN Q, MA D, et al. Theoretical and experimental study of anti-helical motion for underwater glider[J]. Applied Ocean Research, 2016, 60:121-140.
[15] FAN S S, YANG C J, PENG S L, et al. Underwater glider design based on dynamic model analysis and prototype development[J]. Frontiers of Information Technology and Electronic Engineering, 2013, 14(8):583-599.
[16] DANTAS J L D, BARROS E A D. Numerical analysis of control surface effects on AUV manoeuvrability[J]. Journal of Applied Ocean Research, 2013, 42(42):168-181.
[17] BHATTA P. Nonlinear stability and control of gliding vehicles[D]. Princeton:Princeton University, 2006.
[18] LEONARD N E,GRAVER J G. Model based feedback control of autonomous underwater gliders[J]. IEEE Journal of Oceanic Engineering, 2001,26(4):633-645.
[19] 施生达.潜艇操纵性[M].北京:国防工业出版社,1995:19-42.
[20] 孙秀军.混合驱动水下滑翔器动力学建模及运动控制研究[D].天津:天津大学,2011. SUN Xiu-jun. Dynamic modeling and motion control for a hybrid-driven underwater glider[D]. Tianjin:Tianjin University, 2011.

[1] WANG Chen-xue, PING Xue-liang, XU Chao. Closed loop calibration of industrial robot for solving constraint plane wandering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2110-2119.
[2] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1980-1988.
[3] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[4] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1499-1508.
[5] DU Ming-yu, BAO Guan-jun, YANG Qing-hua, WANG Zhi-heng, ZHANG Li-bin. Novel method in pattern recognition of hand actions based on improved support vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1239-1246.
[6] CHEN Di-jian, XU Yi-zhan, WANG Bin-rui. On-line optimal gait generation for biped walking robot by using double generating functions method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1253-1259.
[7] QIN Chao, LIANG Xi-feng, LU Jie, PENG Ming, JIN Chao-qi. Trajectory planning and simulation for 7-DoF tomato harvesting manipulator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1260-1266.
[8] LI Zhong-wen, WANG Bin-rui, CHEN Di-jian. Gait planning for quadruped robot with parallel spine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1267-1274.
[9] KE Xian-xin, ZHANG Wen-zhen, YANG Yang, WEN Lei. Multi-sensor positioning system for humanoid robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1247-1252.
[10] LI Ci-ci, TIAN Guo-hui, ZHANG Meng-yang, ZHANG Ying. Ontology-based humanoid cognition and reasoning of object attributes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1231-1238.
[11] WANG Yu, WEI Wei. Prony's method on frequency domain to estimate two overlapped components[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1157-1166.
[12] ZHANG Tie, LIANG Xiao-hong. Kalman filter-based SCARA robot joint torque estimation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 951-959.
[13] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 934-942.
[14] WANG Yang-wei, LAN Bo-wen, LIU Kai, ZHAO Dong-biao. Modeling and experiment of flexible manipulator actuated by shape memory alloy wire[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 628-634.
[15] WU Bing-long, QU Dao-kui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 379-386.