Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (5): 951-959    DOI: 10.3785/j.issn.1008-973X.2018.05.015
Mechanical and Energy Engineering     
Kalman filter-based SCARA robot joint torque estimation
ZHANG Tie, LIANG Xiao-hong
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Download:   PDF(3008KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dynamic model based Kalman estimation method was designed for joint torque estimation in order to solve the problem that robot control information reliability was reduced because of the fluctuating joint torque value obtained by commonly used current measurement method while the current was affected by noise generated during robot operation. The Newton-Euler method was used for SCARA robot dynamic modeling and the nonlinear continuous joint torque equations were obtained. Then the nonlinear continuous joint torque equations were converted to linear discrete state space model of joint torque by first-order Taylor expansion of multivariate functions. The Kalman filter method was performed to estimate joint torque. Experimental results showed that the proposed method had better estimation accuracy for the first two axes of the robot and the mean square root error decreases by 2.9% and 14.7%, respectively, compared to mean filtering method. The real-time performance was good that the average time required to complete an estimation did not exceed 1 ms. The joint torque estimation accuracy was affected by the SCARA robot dynamic model accuracy.



Received: 20 April 2017      Published: 07 November 2018
CLC:  TP24  
Cite this article:

ZHANG Tie, LIANG Xiao-hong. Kalman filter-based SCARA robot joint torque estimation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 951-959.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.05.015     OR     http://www.zjujournals.com/eng/Y2018/V52/I5/951


平面关节型机器人关节力矩的卡尔曼估计

为了解决常用测电流获取机器人关节力矩方法中,各种噪声干扰使所得关节力矩波动较大,影响机器人控制信息可靠性的问题,提出基于机器人动力学模型的卡尔曼滤波方法对关节力矩进行估计.运用牛顿欧拉方法对平面关节型机器人(SCARA)进行动力学建模,获得非线性连续的机器人关节力矩方程.通过多元函数一阶泰勒展开将非线性连续的关节力矩方程转换为关于关节力矩的线性离散状态空间模型.利用卡尔曼滤波方法对关节力矩进行估计.实验结果表明,该关节力矩估计方法对机器人前两轴的关节力矩估计精度较好,与均值滤波方法相比均方根误差分别减少了2.9%和14.7%;且实时性较好,完成一次估计平均需时不超过1 ms.但关节力矩值的估计精度受动力学模型精度的影响.

[1] DZHANKHOTOV V, PYRHÖNEN J. PASSIVE L C. Filter design considerations for motor applications[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10):4253-4259.
[2] AKAGI H, ISOZAKI K. A hybrid active filter for a three-phase 12-pulse diode rectifier used as the front end of a medium-voltage motor drive[J]. IEEE Transactions on Power Electronics, 2012, 27(1):69-77.
[3] KINSHEEL A, TAHA Z, DEBOUCHA A, et al. Robust least square estimation of the CRS A465 robot arms dynamic model parameters[J]. Journal of Mechanical Engineering Research, 2012, 4(3):88-89.
[4] 牛里,杨明,王庚,等.基于无差拍控制的永磁同步电机鲁棒电流控制算法研究[J].中国电机工程学报,2013,33(15):78-85. NIU Li, YANG Ming, WANG Geng, et al. Research on the robust current control algorithm of permanent magnet synchronous motor based on deadbeat control principle[J]. Proceedings of the CSEE, 2013, 33(15):78-85.
[5] 王东文,宋词,周伟.自适应滤波在永磁同步电机电流环优化中的应用[J].电工技术学报,2014(增刊1):90-94. WANG Dong-wen, SONG Ci, ZHOU Wei. Adaptive filter applied in optimizing current loop of permanent magnet synchronous Motor[J]. Transactions of China Electrotechnical Society, 2014(supp11):90-94.
[6] 张海洋,许海平,方程,等.基于谐振数字滤波器的直驱式永磁同步电机转矩脉动抑制方法[J].中国电机工程学报,2018,38(4):1222-1231+1299. ZHANG Hai-yang, XU Hai-ping, FANG Cheng, et al. Torque ripple suppression method of direct-drive permanent magnet synchronous motor based on resonant digital filter[J], Proceedings of the CSEE, 2018, 38(4):1222-1231+1299.
[7] GROTJAHN M, DAEMI M, HEIMANN B. Friction and rigid body identification of robot dynamics[J]. International Journal of Solids and Structures, 2001, 38(10):1889-1902.
[8] 杨松,王毅,苏宝库.高精确度伺服转台控制系统中的扰动力矩补偿[J].电机与控制学报,2009,13(4):615-619. YANG Song, WANG Yi, SU Bao-ku. Study on disturbance torques compensation in high precise servo turntable control system[J]. Electric Machines and Control, 2009, 13(4):615-619.
[9] 赵辉,冯英浚,张志忠,等.神经网络用于永磁同步电机系统波动力矩补偿[J].哈尔滨工业大学学报,2003,35(1):5-7. ZHAO Hui, FENG Ying-jun, ZHANG Zhi-zhong, et al. Application of neural network for ripple torque compensation of permanent magnet synchronous motor system[J]. Journal of Harbin Institute of Technology, 2003, 35(1):5-7.
[10] VAN DAMME M, BEYL P, Vanderborght B, et al. Estimating robot end-effector force from noisy actuator torque measurements[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. Shanghai:IEEE, 2011:1108-1113.
[11] ZOLLO L, LOPEZ E, SPEDALIERE L, et al. Identification of dynamic Parameters for robots with elastic joints[J]. Advances in Mechanical Engineering, 2015. 7(2):843186-843186.
[12] ZHU S, CHEN Q, WANG X, et al. Dynamic modelling using screw theory and nonlinear sliding mode control of serial robot[J]. International Journal of Robotics and Automation, 2016, 31(1):63-75.
[13] CRAIG J J. Introduction to robotics:mechanics and control, third edition[M]. Upper Saddle River:Pearson Prentice Hall, 2005.
[14] SOUSA C J S D. Dynamic model identification of robot manipulators:Solving the physical feasibility problem[D]. Coimbra:University of Coimbra, 2014.
[15] 陈金广,李洁,高新波.双重迭代变分贝叶斯自适应卡尔曼滤波算法[J].电子科技大学学报,2012,41(3):359-363. CHEN Jin-guang, LI Jie, GAO Xin-bo. Dual Recursive Variational Bayesian Adaptive Kalman Filtering Algorithm[J], Journal of University of Electronic Science and Technology of China, 2012, 41(3):359-363.
[16] FARSONI S, LANDI C T, FERRAGUTI F, et al. Compensation of Load Dynamics for Admittance Controlled Interactive Industrial Robots Using a Quaternion-Based Kalman Filter[J]. IEEE Robotics and Automation Letters, 2017, 2(2):672-679.
[17] RIGATOS G G. Control and disturbances compensation in underactuated robotic systems using the derivative-free nonlinear Kalman filter[J]. Robotica, 2017, 35(3):687-711.
[18] ORNELAS F, SANCHEZ E N, LOUKIANOV A G. Real-time inverse optimal control for a planar robot[C]//Intelligent Control (ISIC), 2010 IEEE International Symposium on. Yokohama:IEEE, 2010:2332-2337.
[19] ASL R M, HAGH Y S, PALM R. Robust control by adaptive non-singular terminal sliding mode[J]. Engineering Applications of Artificial Intelligence, 2017, 59:205-217.
[20] 钟万勰,吴志刚,谭述君.状态空间控制理论与计算[M].北京:科学出版社,2007.

[1] WANG Chen-xue, PING Xue-liang, XU Chao. Closed loop calibration of industrial robot for solving constraint plane wandering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2110-2119.
[2] ZHAO Xiao-dong, LIU Zuo-jun, CHEN Ling-ling, YANG Peng. Approach of running gait recognition for lower limb amputees[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1980-1988.
[3] WANG Shuo-peng, YANG Peng, SUN Hao. Construction process optimization of fingerprint database for auditory localization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1973-1979.
[4] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1499-1508.
[5] DU Ming-yu, BAO Guan-jun, YANG Qing-hua, WANG Zhi-heng, ZHANG Li-bin. Novel method in pattern recognition of hand actions based on improved support vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1239-1246.
[6] CHEN Di-jian, XU Yi-zhan, WANG Bin-rui. On-line optimal gait generation for biped walking robot by using double generating functions method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1253-1259.
[7] QIN Chao, LIANG Xi-feng, LU Jie, PENG Ming, JIN Chao-qi. Trajectory planning and simulation for 7-DoF tomato harvesting manipulator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1260-1266.
[8] LI Zhong-wen, WANG Bin-rui, CHEN Di-jian. Gait planning for quadruped robot with parallel spine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1267-1274.
[9] KE Xian-xin, ZHANG Wen-zhen, YANG Yang, WEN Lei. Multi-sensor positioning system for humanoid robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1247-1252.
[10] LI Ci-ci, TIAN Guo-hui, ZHANG Meng-yang, ZHANG Ying. Ontology-based humanoid cognition and reasoning of object attributes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1231-1238.
[11] WANG Yu, WEI Wei. Prony's method on frequency domain to estimate two overlapped components[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1157-1166.
[12] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 934-942.
[13] WANG Yang-wei, LAN Bo-wen, LIU Kai, ZHAO Dong-biao. Modeling and experiment of flexible manipulator actuated by shape memory alloy wire[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 628-634.
[14] WU Bing-long, QU Dao-kui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 379-386.
[15] PAN Li, BAO Guan-jun, XU Fang, ZHANG Li-bin. Dynamic compliant control of six DOF assembly robot[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 125-132.