Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Leg compliance control of hexapod robot based on adaptive-fuzzy control
ZHU Ya-guang, JIN Bo, LI Wei
The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(2062KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Considering the compliance control problem of hexapod robot under different environment, a control strategy based on the adaptive-fuzzy control algorithm was raised. Based on the model of robot structure and impedance control, the indirect adaptive control algorithm was derived. And through the analysis of its parameters, it could be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. According to this situation, the fuzzy control algorithm was used to modify the parameters of adaptive control and satisfied system response could be obtained based on the adjustment in real time according to the difference between input and output. The comparative analysis of traditional indirect adaptive control and the improved adaptive-fuzzy control algorithm was presented. It can be verified that not only desired contact force can be tracked when the environmental parameters are changing, but also small contact impact and high steady-state accuracy can be guaranteed under the fluctuations in the body height. The control strategy has great significance to enhance the adaptability of the hexapod robot.



Published: 01 August 2014
CLC:  TP 242  
Cite this article:

ZHU Ya-guang, JIN Bo, LI Wei. Leg compliance control of hexapod robot based on adaptive-fuzzy control. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1419-1426.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.08.011     OR     http://www.zjujournals.com/eng/Y2014/V48/I8/1419


基于自适应-模糊控制的六足机器人单腿柔顺控制

针对六足机器人在不同环境下进行柔顺控制的问题,提出一种基于自适应-模糊控制算法的腿部柔顺控制策略.在建立六足机器人结构模型和阻抗控制模型的基础上,推导间接自适应控制算法,并通过对该算法参数进行分析,得知该算法并不能满足在复杂环境下机器人脚力控制的要求.根据这一情况提出自适应-模糊控制算法,运用模糊控制算法对自适应控制参数进行修正,根据输入与输出的差异关系实时调整参数以得到满意的系统响应.通过对传统的间接自适应控制和改进后自适应-模糊控制算法的比较分析,结果表明,改进后的算法不仅在环境参数发生变化时能够很好跟随期望接触力,而且在躯体高度波动的情况下依然能够保证较小的接触冲击力和较高的稳态精度.这对于提高六足机器人的适应性有着重要意义.

[1] LIN Y, SONG S M. Learning hybrid position/force control of a quadruped walking machine using a CMAC neural network [J]. Journal of Robotic Systems, 1997, 14(6): 483-499.
[2] KLEIN C A, OLSON K W, PUGH D R. Use of force and attitude sensors for locomotion of a legged vehicle over irregular terrain [J]. The International Journal of Robotics Research, 1983, 2(2): 317.
[3] IRAWAN A, NONAMI K. Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain [J]. Journal of Field Robotics, 2011, 28(5): 690-713.
[4] SILVA M F, MACHADO J A, BARBOSA R S. Complex-order dynamics in hexapod locomotion[J]. Signal processing, 2006, 86(10): 2785-2793.
[5] HUANG Q J, NONAMI K. Humanitarian mine detecting six-legged walking robot and hybrid neuro walking control with position/force control [J]. Mechatronics, 2003, 13(8): 773-790.
[6] RNNAU A, KERSCHER T, DILLMANN R. Dynamic Position/Force Controller of a Four Degree-of-Freedom Robotic Leg [C]∥ Robot Motion and Control 2011. London: Springer, 2012: 117-126.
[7] OKU M, KOSEKI H, OHROKU H, et al. Rough terrain locomotion control of hydraulically actuated hexapod robot COMET-IV [C]∥ Proceedings of 2008 JSME Conference on Robotics and Mechatronics (ROBOMEC 2008). Nagano, Japan. ICRA, 2008.
[8] PAVONE M, ARENA P, FORTUNA L, et al. Climbing obstacle in bio‐robots via CNN and adaptive attitude control [J]. International Journal Of Circuit Theory And Applications, 2006, 34(1): 109-125.
[9] HOGAN N. Impedance control of industrial robots [J]. Robotics and Computer-Integrated Manufacturing, 1984, 1(1): 97-113.
[10] KAZEROONI H. Automated roboting deburring using electronic compliancy; Impedance control[C]∥ Proceedings of IEEE International Conference on Robotics and Automation. North Carolina: IEEE, 1987, 4: 1025-1032.
[11] YIN P, WANG P, LI M, et al. A novel control strategy for quadruped robot walking over irregular terrain[C] ∥ Robotics, Automation and Mechatronics (RAM), 2011 IEEE Conference on. Qingdao: IEEE, 2011, 4: 184-189.
[12] GALVEZ J A, ESTREMERA J, GONZALEZ DE SANTOS P. A new legged-robot configuration for research in force distribution [J]. Mechatronics, 2003, 13(8): 907-932.
[13] PALIS F, RUSIN V, SCHNEIDER A. Adaptive impedance/force control of legged robot systems [C]∥ Proc. Int. Conf. Climbing and Walking Robots. Kalsruhe, Germany: Prof. Engineering Publ, 2001: 323-329.
[14] YONEDA K, IIYAMA H, Hirose S. Sky-hook suspension control of a quadruped walking vehicle [C] ∥ Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on. San Diego, USA: IEEE, 1994: 999-1004.
[15] LIN Y, SONG S M. Learning hybrid position/force control of a quadruped walking machine using a CMAC neural network [J]. Journal of Robotic Systems, 1997, 14(6): 483-499.
16] HUANG Q, FUKUHARA Y. Posture and vibration control based on virtual suspension model using sliding mode control for six-legged walking robot [C].∥ 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006: 5232-5237.
[17] GORINEVSKY D M, SHNEIDER A Y. Force control in locomotion of legged vehicles over rigid and soft surfaces [J]. The International Journal of Robotics Research, 1990, 9(2): 423.
[18] ZIELINSKA T, HENG J. Development of a walking machine: mechanical design and control problems [J]. Mechatronics, 2002, 12(5): 737-754.
[19] 金波,陈诚,李伟.基于能耗优化的六足步行机器人力矩分配[J]浙江大学学报:工学版, 2012, 46(07): 1168-1174.
JIN Bo, CHEN Cheng ,LI Wei, Optimization of energy-efficient torque distribution for hexapod walking robot  [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(07): 1168-1174.
[20] SERAJI H, COLBAUGH R. Force tracking in impedance control [J]. The International Journal of Robotics Research, 1997, 16(1): 97-117.
[21] SURDILOVIC D, COJBASIC Z. Robust robot compliant motion control using intelligent adaptive impedance approach [C]∥ Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on. Detroit, USA: IEEE, 1999, 3: 2128-2133.

[1] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 706-713.
[2] TANG Zhi-dong, YUN Chao. Quick action coupling technology in full-automatic quick coupling device: a review[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 461-470.
[3] XU Xian jin, WU Long hui, YANG Xiao jun, TANG Liang, YANG Yong feng. Magnetic driving method of inspection robot for HVDC transmission lines[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1937-1945.
[4] ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po. Robot position and rotation calibration method based on precision of spatial mesh[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1980-1986.
[5] JIA Song min, LU Ying bin, WANG Li jia, LI Xiu zhi, XU Tao. Mobile robot human tracking using hierarchical features[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1677-1683.
[6] ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin. Steering performance of underwater glider in water column monitoring[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1637-1645.
[7] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1381-1386.
[8] DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan. Visual trajectory planning for mobile robots based on hybrid artificial potential field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1298-1306.
[9] ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao. Base frame calibration of circumferential splice drilling system based on visual measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1080-1087.
[10] JIANG Wen ting, GONG Xiao jin, LIU Ji lin. Incremental large scale dense semantic mapping[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 385-391.
[11] HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin. Posture optimization and smoothness for robot drilling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2261-2268.
[12] LI Wei, ZHAO Zhi gang, SHI Guang tian, MENG Jia dong. Solutions of kinematics and dynamics for parallel cable driven system with multi robots[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1916-1923.
[13] MA Zi ang, XIANG Zhi yu. Calibration and 3D reconstruction with omnidirectional ranging by optic flow camera[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1651-1657.
[14] HE Xue-jun, WANG Jin, LU Guo-dong, CHEN Li.
Optimization of robot image drawing sequence based on ant colony algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1139-1145.
[15] YUAN Kang-zheng, ZHU Wei-dong, CHEN Lei, XUE Lei, QI Wen-gang. Approach for calibrating position of displacement sensor mounted on robot end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 829-834.