Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Robotic automatic drilling system
BI Yun-bo1, LI Yong-chao1, GU Jin-wei1, GUO Ying-jie1, WEN Li-bo2, WANG Shao-bin2, HUANG Hong2
1. Department of Mechanical Engineering, Zhejinag University, Hangzhou 310027, China; 2. Shanxi Aircraft Industry(Group) Corporation LTD., Hanzhong 723213, China
Download:   PDF(1952KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A robotic automatic drilling system which integrates the technology of laser measurement, computer control, off-line programming and robotics is established in order to realize automatic flexible drilling with high efficiency and good quality in the field of aircraft assembly. In drilling process, the normal vector of the aircraft surface can be obtained through the 3D model, but there is deviation between the 3D model and the real surface of part. To improve the holes’quality, a surface-normal adjustment system based on four laser displacement sensors is developed. The sensor’origin point position and laser direction are obtained by calibration. Then with the measured values of laser displacement sensors, the surface-normal vector is calculated. The attitude of the robot is changed to make sure the drilling direction is close to the surface-normal direction. The drilling test results show that the system can increase the drilling efficiency and assembly quality of the aircraft components immensely. The efficiency of drilling can achieve 6 holes per minute, and the surface-normal accuracy is better than 0.5°.



Published: 01 August 2014
CLC:  TP 24  
Cite this article:

BI Yun-bo, LI Yong-chao, GU Jin-wei, GUO Ying-jie, WEN Li-bo, WANG Shao-bin, HUANG Hong. Robotic automatic drilling system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1427-1433.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.08.012     OR     http://www.zjujournals.com/eng/Y2014/V48/I8/1427


机器人自动化制孔系统

为了实现飞机装配中高质量、高效率的自动化柔性制孔,架构一套集成激光测量技术、计算机控制技术、离线编程技术和机器人技术的自动化制孔系统.在自动化制孔过程中,孔位法向向量可以根据产品模型直接获取,但是飞机部件的实际外形和理论外形存在一定的偏差.为了减少制孔偏差,提出一种基于4个激光位移传感器的法向偏差修正技术.通过标定获得激光位移传感器的零点位置和激光方向,再根据传感器的测量值计算得到加工表面的实际法矢方向,通过调整机器人姿态实现孔位法向偏差的修正.试验结果表明,该系统的制孔效率为6 孔/min,法向精度优于0.5°,大幅提高飞机部件的制孔效率和装配质量.

[1] 袁红璇.飞机结构件连接孔制造技术[J].航空制造技术, 2007, 1: 96-99.
YUAN Hong-xuan. Manufacturing technology of connecting hole in aircraft structures [J]. Aeronautical Manufacturing Technology, 2007, 1: 96-99.
[2] RICK C, STEVE S, IAN M, et al. Hawde five axis wing surface drilling machine\[R\]. 2004012806, Washington, DC: SAE, 2004.
[3] BENJAMEN H, BRENT T, STEPHEN W. Composite automatic wing drilling equipment (cawde)\[R\]. 2006013162, Washington, DC: SAE, 2006.
[4] RUSSEL D, KEVIN S, ED F, et al. Once (one sided cell end effector) robotic drilling system\[R\]. 200212626, Washington, DC: SAE, 2002.
[5] JOE A, JOHN H, SIMON J, et al. Robotic drilling system for 737 aileron\[R\]. 2007013821, Washington, DC: SAE, 2007.
[6] RUSSELL D, TODD S. Applied accurate robotic drilling for aircraft fuselage\[R\]. 2010011836, Washington, DC: SAE, 2010.
[7] Carrolltor. aerospace robotic end effectors and system[EB/OL]. (2007)[2009-08-20]. http:∥www.eoa.com.
[8] 侯志霞,刘建东,薛贵军等.柔性导轨自动制孔设备控制技术[J].航空制造技术, 2009, 24: 59-64.
HOU Zhi-xia, LIU Jian-dong, XUE Gui-jun, et al. Control technology of flexible track automatic drilling machine [J]. Aeronautical Manufacturing Technology, 2009, 24: 59-64.
[9] 姚艳斌,毕树生,员俊峰,等.飞机部件机器人自动制孔控制系统设计与分析[J]. 中国机械工程, 2009, 21(17): 2021-2024.
YAO Yan-bin, BI Shu-sheng, YUAN Jun-feng, et al. Design and analyses of robot automatic drilling control system of aircraft components [J]. China Mechanical Engineering, 2009, 21(17): 2021-2024.
[10] 曲巍葳,董辉跃,柯映林.机器人辅助飞机装配制孔中位姿精度补偿技术[J].航空学报, 2011, 32(10): 1951-1960.
QU Wei-wei, DONG Hui-yue, KE Ying-lin. Pose accuracy compensation technology in robotic automatic drilling process [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1951-1960.
[11] 薛汉杰,张敬佩.蒙皮类部件钻孔法向的测量和调整[J].航空制造技术, 2010, 23: 60-62.
XUE Han-jie, ZHANG Jing-pei. Normal measurement and adjustment for skin drilling [J]. Aeronautical Manufacturing Technology, 2010, 23: 60-62.
[12] 邹冀华,周万勇,韩先国.飞机装配中基于3-RPS的并联机构法向调整算法[J].中国机械工程,2011, 22(5): 557-560.
ZOU Ji-hua, ZHOU Wan-yong, HAN Xian-guo. Normal adjusting algorithm of a 3-rps parallel mechanism in airplane assembly[J]. China Mechanical Engineering, 2011, 22(5): 557-560.
[13] 胡挺,吴立军.CATIA二次开发技术基础[M].北京:电子工业出版社,2006: 18117.
[14] 官云兰,程效军,施贵刚.一种稳健的点云数据平面拟合方法[J].同济大学学报:自然科学版, 2006,36(7): 981-984.
GUAN Yun-lan, CHENG Xiao-jun, SHIi Gui-gang. A robust method for fitting a plane to point clouds [J]. Journal of Tongji University: Natural Science. 2006, 36(7): 981-984.

[1] GAO De-dong, LI Qiang, LEI Yong, XU Fei, BAI Hui-quan. Geometric approximation approach based research on kinematics of bevel-tip flexible needles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 706-713.
[2] ZHANG Ming-kui, CHENG Wen-ming, LIU Fang. Coupling effect between load characteristics and joint driving characteristics of powered exoskeleton[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 807-816.
[3] TANG Zhi-dong, YUN Chao. Quick action coupling technology in full-automatic quick coupling device: a review[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 461-470.
[4] QIAN Long hao, HU Shi qiang, YANG Yong sheng. Analytical inverse kinematics algorithm for double-octahedral variable geometry truss manipulators[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 75-81.
[5] CHEN Peng, XIANG Ji, WEI Wei. Torque limit constrained control of redundant manipulator based on GWLN method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 68-74.
[6] ZHANG Yong tao, SONG Zhi wei, WANG Yi, NIAN Shan po. Robot position and rotation calibration method based on precision of spatial mesh[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1980-1986.
[7] XU Xian jin, WU Long hui, YANG Xiao jun, TANG Liang, YANG Yong feng. Magnetic driving method of inspection robot for HVDC transmission lines[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1937-1945.
[8] ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin. Steering performance of underwater glider in water column monitoring[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1637-1645.
[9] JIA Song min, LU Ying bin, WANG Li jia, LI Xiu zhi, XU Tao. Mobile robot human tracking using hierarchical features[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1677-1683.
[10] DING Xia qing, DU Zhuo yang, LU Yi qing, LIU Shan. Visual trajectory planning for mobile robots based on hybrid artificial potential field[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1298-1306.
[11] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1381-1386.
[12] ZHANG A long, ZHANG Ming, QIAO Ming jie, ZHU Wei dong, MEI Biao. Base frame calibration of circumferential splice drilling system based on visual measurement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1080-1087.
[13] JIANG Wen ting, GONG Xiao jin, LIU Ji lin. Incremental large scale dense semantic mapping[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 385-391.
[14] HUANG Shui hua, JIANG Pei,WEI Wei, XIANG Ji, PENG Yong gang. Attitude pointing control of manipulator based on quaternion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 173-179.
[15] HUANG Qi wei, ZHANG Ming, QU Wei wei, LU Xian gang, KE Ying lin. Posture optimization and smoothness for robot drilling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2261-2268.