Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (1): 169-176    DOI: 10.3785/j.issn.1008-973X.2021.01.020
机械工程     
基于自适应快速终端滑模的车轮滑移率跟踪控制
李静1(),王晨1,张家旭1,2,*()
1. 吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130011
2. 中国第一汽车集团有限公司智能网联研发院,吉林 长春 130011
Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method
Jing LI1(),Chen WANG1,Jia-xu ZHANG1,2,*()
1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130011, China
2. Intelligent Network R&D Institute, China FAW Group Limited Company, Changchun 130011, China
 全文: PDF(1220 KB)   HTML
摘要:

针对汽车对连续、快速和稳定的车轮滑移率跟踪控制的需求,提出基于自适应快速终端滑模的车轮滑移率跟踪控制策略. 基于Burckhardt轮胎模型建立车轮滑移率跟踪控制模型,将模型简化过程中的不确定性考虑成复合干扰项,将轮胎侧向力对纵向力的影响考虑成未知参数. 利用双曲正切函数和终端吸引因子设计改进的跟踪微分器,平滑车轮滑移率跟踪误差和估计车轮滑移率跟踪误差的一阶导数. 以车轮滑移率跟踪控制模型和改进的跟踪微分器输出为基础,基于自适应快速终端滑模控制理论,设计对复合干扰项具有强鲁棒性的车轮滑移率跟踪控制律;基于投影算子理论设计自适应律来实时补偿未知参数,利用LaSalle不变性原理证明了闭环系统的渐近稳定性. 利用车辆动力学软件仿真验证提出的控制律的可行性和有效性. 结果表明,提出的车轮滑移率跟踪控制策略具有精度高和鲁棒性强的优点.

关键词: 汽车动力学车轮滑移率跟踪控制自适应控制快速终端滑模控制    
Abstract:

A novel wheel slip tracking control strategy was proposed based on adaptive fast terminal sliding model control method aiming at the requirement of the vehicle for the continuous, fast and stable wheel slip tracking control. The wheel slip tracking control model was established based on Burckhardt tire model. The uncertainty during the process of model simplification and the influence of the tire lateral force on the tire longitudinal force in the wheel slip tracking control model were considered as the lumped uncertainty and the unknown parameter, respectively. The modified tracking differentiator was deduced based on hyperbolic tangent function and terminal attraction factor in order to smooth the wheel slip tracking error and estimate the derivative of the wheel slip tracking error. The wheel slip rate tracking control law with strong robustness for the system uncertainty was proposed based on the adaptive fast terminal sliding mode control theory according to the wheel slip tracking control model and the outputs of the modified tracking differentiator. The adaptive law was proposed based on projection operator theory to compensate the unknown parameter. The asymptotic stability of the closed-loop system was proved using the LaSalle invariance principle. The feasibility and effectiveness of the proposed wheel slip tracking control strategy was verified based on vehicle dynamics simulation software. Results show that the proposed wheel slip tracking control strategy has high accuracy and strong robustness.

Key words: vehicle dynamics    wheel slip tracking control    adaptive control    fast terminal sliding mode control
收稿日期: 2019-12-24 出版日期: 2021-01-27
CLC:  U 461  
基金资助: 电动汽车智能辅助驾驶关键技术研究与产品开发项目(2016YFB0101000)
通讯作者: 张家旭     E-mail: liye1129@163.com;zhjx_686@163.com
作者简介: 李静(1976—),男,教授,博导,从事汽车地面系统分析与控制的研究. orcid.org/0000-0002-6126-1632. E-mail: liye1129@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李静
王晨
张家旭

引用本文:

李静,王晨,张家旭. 基于自适应快速终端滑模的车轮滑移率跟踪控制[J]. 浙江大学学报(工学版), 2021, 55(1): 169-176.

Jing LI,Chen WANG,Jia-xu ZHANG. Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 169-176.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.020        http://www.zjujournals.com/eng/CN/Y2021/V55/I1/169

图 1  车轮滑移率动态模型
图 2  系统总体架构
图 3  斜坡信号工况的跟踪误差及误差变化率
图 4  斜坡信号工况的车辆状态信息
图 5  正弦信号工况的跟踪误差及误差变化率
图 6  正弦信号工况的车辆状态信息
1 KUO C Y, YEH E C A four-phase control scheme of an anti-skid brake system for all road conditions[J]. Proceeding of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1992, 206 (44): 275- 283
2 TANELLI M, OSORIO G, BERNARDO M D, et al Existence, stability and robustness analysis of limit cycles in hybrid anti-lock braking systems[J]. International Journal of Control, 2009, 82 (4): 659- 678
doi: 10.1080/00207170802203598
3 JING H H, LIU Z Y, CHEN H A switched control strategy for antilock braking system with on/off valves[J]. IEEE Transactions on Vehicular Technology, 2011, 60 (4): 1470- 1484
doi: 10.1109/TVT.2011.2125806
4 马付雷. 汽车ABS逻辑门限值控制算法研究与实现[D]. 重庆: 重庆邮电大学, 2011.
5 王伟达, 丁能根, 张为, 等 ABS逻辑门限值自调整控制方法研究与试验验证[J]. 机械工程学报, 2010, 46 (22): 90- 104
WANG Wei-da, DING Neng-gen, ZHANG Wei, et al Research and verification of the logic threshold self-adjusting control method for ABS[J]. Journal of Mechanical Engineering, 2010, 46 (22): 90- 104
doi: 10.3901/JME.2010.22.090
6 PASILLAS-LEPINE W, LORIA A, GERARD M Design and experimental validation of a nonlinear wheel slip control algorithm[J]. Automatica, 2012, 48: 1852- 1859
doi: 10.1016/j.automatica.2012.05.073
7 SHIM T, CHANG S, LEE S Investigation of sliding-surface design on the performance of sliding mode controller in antilock braking systems[J]. IEEE Transactions on Vehicular Technology, 2008, 57 (2): 747- 759
doi: 10.1109/TVT.2007.905391
8 YU H X, QI Z Q, DUAN J M, et al Multiple model adaptive backstepping control for antilock braking system based on LuGre dynamic tyre model[J]. International Journal of Vehicle Design, 2015, 69 (1-4): 168- 184
9 MIRZAEI M, MIRZAEINEJAD H Optimal design of a non-linear controller for anti-lock braking system[J]. Transportation Research Part C, 2012, 24: 19- 35
doi: 10.1016/j.trc.2012.01.008
10 AMODEO M, FERRARA A, TERZAGHI R, et al Wheel slip control via second-order sliding-mode generation[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11 (1): 122- 131
doi: 10.1109/TITS.2009.2035438
11 TANELLI M, ASTOLFI A, SAVARESI S M Robust nonlinear output feedback control for brake by wire control systems[J]. Automatica, 2008, 44: 1078- 1083
doi: 10.1016/j.automatica.2007.08.020
12 JOHANSEN T A, PETERSEN I, KALKKUHL J, et al Gain-scheduled wheel slip control in automotive brake systems[J]. IEEE Transactions on Control Systems Technology, 2003, 11 (6): 799- 811
doi: 10.1109/TCST.2003.815607
13 ZHANG J X, LI J Adaptive backstepping sliding mode control for wheel slip tracking of vehicle with uncertainty observer[J]. Measurement and Control, 2018, 51 (9/10): 396- 405
14 ZHANG J X, LI J Robust backstepping sliding mode control with L2-gain performance for reference input wheel slip tracking of vehicle[J]. Information Technology and Control, 2019, 48 (4): 660- 672
15 HE Y G, LU C D, SHEN J, et al Design and analysis of output feedback constraint control for antilock braking system with time-varying slip ratio[J]. Mathematical Problems in Engineering, 2019, 2019: 1- 11
16 HE Y G, LU C D, SHEN J, et al Design and analysis of output feedback constraint control for antilock braking system based on Burckhardt's model[J]. Assembly Automation, 2019, 39 (4): 497- 513
doi: 10.1108/AA-08-2018-0119
17 KIENCKE U, NIELSEN L. Automotive control systems [M]. Berlin: Springer, 2000.
18 申帅, 张葆, 李贤涛, 等 基于跟踪微分器的加速度反馈控制[J]. 吉林大学学报: 工学版, 2017, 47 (4): 1217- 1224
SHEN Shuai, ZHANG Bao, LI Xian-tao, et al Acceleration feedback control based on tracking differentiator[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47 (4): 1217- 1224
19 谭诗利, 雷虎民, 王鹏飞 应用跟踪微分器的高超声速飞行器的反演控制[J]. 宇航学报, 2019, 40 (6): 673- 683
TAN Shi-li, LEI Hu-min, WANG Peng-fei Backstepping control for hypersonic vehicle with a novel tracking differentiator[J]. Journal of Astronautics, 2019, 40 (6): 673- 683
20 姜长生, 吴庆宪, 费树岷, 等. 现代非线性系统鲁棒控制基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2012.
21 HAN J Q, WANG W Nonlinear tracking differentiator[J]. Journal of Systems Science and Mathematical Sciences, 1994, 14 (2): 177- 183
22 YANG L, YANG J Y Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21: 1865- 1879
doi: 10.1002/rnc.1666
23 ABRAMOWITZ M, STEGUN I A. Handbook of mathematical functions: with formulas, graphs, and mathematical tables [M]. New York: Dover, 1972.
[1] 关旭东,周瑾,金超武,徐园平. 重载磁悬浮轴承-转子自适应控制性能[J]. 浙江大学学报(工学版), 2020, 54(4): 662-670.
[2] 张燕,王建宙,李威,王婕,陈玲玲,杨鹏. 基于数据驱动的膝关节外骨骼控制[J]. 浙江大学学报(工学版), 2019, 53(10): 2024-2033.
[3] 赵杰梅, 胡忠辉. 基于动态反馈的AUV水平面路径跟踪控制[J]. 浙江大学学报(工学版), 2018, 52(8): 1467-1473.
[4] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[5] 王尧尧, 顾临怡, 高 明, 贾现军, 朱康武. 水下运载器非奇异快速终端滑模控制[J]. 浙江大学学报(工学版), 2014, 48(9): 1541-1551.
[6] 朱雅光, 金波, 李伟. 基于自适应-模糊控制的六足机器人单腿柔顺控制[J]. 浙江大学学报(工学版), 2014, 48(8): 1419-1426.
[7] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(5): 1-.
[8] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1758-1766.
[9] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[10] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[11] 钟琮玮, 项基, 韦巍, 张远辉. 基于简化非线性观测器的LuGre动态摩擦力补偿[J]. J4, 2012, 46(4): 764-769.
[12] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.
[13] 王康, 符杨, 辛焕海, 王冠楠. 基于新型Back-stepping方法的电力系统
励磁控制器设计
[J]. J4, 2011, 45(4): 747-753.
[14] 蒋科坚,祝长生. 主动电磁轴承转子系统自适应不平衡补偿控制[J]. J4, 2011, 45(3): 503-509.
[15] 马玉良, 徐文良, 孟明, 罗志增, 杨家强. 基于神经网络的智能下肢假肢自适应控制[J]. J4, 2010, 44(7): 1373-1376.