Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (1): 62-70    DOI: 10.3785/j.issn.1008-973X.2021.01.008
土木工程、交通工程、水利工程     
基于多场耦合模型的混凝土冻融三维细观研究
黄康桥(),赵程,周伟*(),刘杏红,马刚
武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072
Three-dimensional mesoscopic study on freeze-thaw of concrete based on multi-field coupled model
Kang-qiao HUANG(),Cheng ZHAO,Wei ZHOU*(),Xing-hong LIU,Gang MA
State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
 全文: PDF(2002 KB)   HTML
摘要:

基于蒙特-卡洛理论和工程粗骨料粒径分布情况,将骨料形状简化为球形,应用Matlab与Comsol Multiphysics接口进行二次开发,以生成区分骨料、界面过渡区(ITZ)和砂浆的混凝土三相三维细观模型. 采用改进的热-水-力耦合模型,将耦合模型与物理试验进行验证分析,结果吻合较好. 将该耦合模型应用于研究冻融作用下混凝土三维细观尺度的性能演化规律. 研究结果表明,当渗透率较高时,试件整体第一主应力急剧减小,且出现骨料受压而砂浆受拉的情况;当骨料体积分数增大时,试件应力整体呈现下降趋势. 砂浆渗透率和骨料体积分数对混凝土抗冻融性能的影响较大. 不同的ITZ线膨胀系数下混凝土应力变化不大,说明ITZ线膨胀系数对混凝土抗冻融性能的影响相对较小.

关键词: 混凝土冻融循环三维细观尺度随机骨料模型多场耦合分析Comsol Multiphysics    
Abstract:

The shape of aggregate was simplified into sphere based on Monte-Carlo theory and the distribution of coarse aggregate particle size. Matlab and Comsol Multiphysics interface were applied for secondary development to generate a three-phase three-dimensional mesoscopic model of concrete that can distinguish aggregate, ITZ and mortar. The improved thermo-hydro-mechanical model was used, and the results accorded well with the experimental results. The coupled model was applied to analyze the behavior evolution law of concrete three-dimensional mesoscale under freeze-thaw conditions. Results show that the first principal stress of the whole sample decreases sharply and the aggregate is in compression while the mortar is in tension when the permeability is high. The overall stress of the sample shows a downward trend when the aggregate volume fraction increases. Motar permeability and aggregate volume fraction have great influence on the freeze-thaw resistance of concrete. The stress of concrete does not change much under different ITZ coefficients of linear thermal expansion, indicating that ITZ coefficient has relatively little influence on the freeze-thaw resistance of concrete.

Key words: concrete    freeze-thaw cycle    three-dimensional mesoscopic scale    random aggregate model    multi-field coupled analysis    Comsol Multiphysics
收稿日期: 2020-01-19 出版日期: 2021-01-05
CLC:  TV 331  
基金资助: 国家自然科学基金资助项目(51879206)
通讯作者: 周伟     E-mail: huangkangqiao@whu.edu.cn;zw_mxx@163.com
作者简介: 黄康桥(1995—),男,博士生,从事高坝结构设计理论与数值仿真的研究. orcid.org/0000-0003-0964-1616. E-mail: huangkangqiao@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄康桥
赵程
周伟
刘杏红
马刚

引用本文:

黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.

Kang-qiao HUANG,Cheng ZHAO,Wei ZHOU,Xing-hong LIU,Gang MA. Three-dimensional mesoscopic study on freeze-thaw of concrete based on multi-field coupled model. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 62-70.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.008        http://www.zjujournals.com/eng/CN/Y2021/V55/I1/62

图 1  不同骨料体积分数混凝土三维细观模型
组分 ρ /(kg·m?3) E /GPa K/GPa μ n b D0 /(10?21 m2) λ /(W·m?1·K?1) c /(J·kg?1·K?1) αl /K?1 $\overline {{\alpha _{\rm{0}}}} $ /K?1
砂浆 2160 20.2 11.2 0.2 0.1482 0.382 3.675 0.93 840 12.9×10?6 38.8×10?6
ITZ 2160 17.17 9.5 0.2 0.2223 0.382 11.025 0.93 840 12.9×10?6 38.8×10?6
骨料 2600 53.9 ? 0.25 ? ? ? 2.66 830 5×10?6 ?
1000 ? 2 ? ? ? ? 0.55 4220 (?9.2+2.07T)×10?5 ?
917 ? 8 ? ? ? ? 2.20 2110 1.54×10?4 ?
表 1  耦合模型细观数值分析计算参数
参数 数值
K0 /GPa 18.12
η /(Pa·s) 1.38×10?6exp (2590/T)
κ /(N·m) (36+0.25T)×10?3
表 2  细观模拟所用参数
图 2  模型边界温度
图 3  冻结过程数值分析模拟结果与试验数据比较
图 4  不同砂浆和ITZ渗透率试件的第一主应力分布(mw/mc = 0.4,t=10 h)
图 5  不同砂浆和ITZ渗透率试件的第一主应力分布(mw/mc= 0.4,t= 25 h)
图 6  不同砂浆和ITZ渗透率试样的孔隙水压力历程曲线
图 7  不同砂浆和ITZ渗透率试样的结晶压力历程曲线
图 8  不同砂浆和ITZ渗透率试样的第一主应力历程曲线
图 9  不同ITZ线膨胀系数试件的第一主应力分布(mw/mc=0.4,t=15 h)
图 10  不同ITZ线膨胀系数试件的第一主应力分布(mw/mc=0.4,t=50 h)
图 11  不同ITZ线膨胀系数试样的第一主应力历程曲线
图 12  不同骨料体积分数试件的等温面分布(mw/mc=0.4,t=5 h)
图 13  不同骨料体积分数试件的等温面分布(mw/mc=0.4,t=40 h)
图 14  不同骨料体积分数试件的第一主应力分布(mw/mc=0.4,t=5 h)
图 15  不同骨料体积分数试件的第一主应力分布(mw/mc=0.4,t=40 h)
图 16  不同骨料体积分数试样的第一主应力历程曲线
图 17  不同骨料体积分数试样的温度历程曲线
1 段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D]. 北京: 清华大学, 2009.
DUAN An. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process [D]. Beijing: Tsinghua University, 2009.
2 曾强, 李克非 冻融情况下降温速率对水泥基材料变形和损伤的影响[J]. 清华大学学报: 自然科学版, 2008, 48 (9): 1390- 1394
ZENG Qiang, LI Ke-fei Influence of freezing rate on the cryo-deformation and cryo-damage of cement-based materials during freeze-thaw cycles[J]. Journal of Tsinghua University: Science and Technology, 2008, 48 (9): 1390- 1394
3 ZHOU W, ZHAO C, LIU X, et al Mesoscopic simulation of thermo-mechanical behaviors in concrete under frost action[J]. Construction and Building Materials, 2017, 157: 117- 131
doi: 10.1016/j.conbuildmat.2017.09.009
4 POWERS T C A working hypothesis for further studies of frost resistance of concrete[J]. Journal of the American Concrete Institute, 1945, 41 (4): 245- 272
5 POWERS T C. The air requirement of frost-resistance concrete [C]// Proceedings of Highway Research Board. Washington, D. C.: Highway Research Board, 1949: 184-211.
6 POWERS T C, HELMUTH R A. Theory of volume changes in hardened Portland-Cement paste during freezing [C]// Proceedings of the Highway Research Board Annual Meeting. Washington, D. C. : Highway Research Board, 1953: 285-297.
7 POWERS T C. Freezing effect in concrete [C]// Durability of Concrete. Detroit: ACI, 1975: 1-11.
8 BA?ANT Z P, CHERN J C, ROSENBERG A M, et al Mathematical model for freeze-thaw durability of concrete[J]. Journal of the American Ceramic Society, 1988, 71 (9): 776- 783
doi: 10.1111/j.1151-2916.1988.tb06413.x
9 ZUBER B, MARCHAND J Modeling the deterioration of hydrated cement systems exposed to frost action: Part 1: description of the mathematical model[J]. Cement and Concrete Research, 2000, 30 (12): 1929- 1939
doi: 10.1016/S0008-8846(00)00405-1
10 ZUBER B, MARCHAND J Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria[J]. Materials and Structures, 2004, 37 (4): 257- 270
doi: 10.1007/BF02480634
11 DUAN A, CHEN J, JIN W Numerical simulation of the freezing process of concrete[J]. Journal of Materials in Civil Engineering, 2013, 25 (9): 1317- 1325
doi: 10.1061/(ASCE)MT.1943-5533.0000655
12 ZHOU W, FENG C, LIU X, et al A macro–meso chemo-physical analysis of early-age concrete based on a fixed hydration model[J]. Magazine of Concrete Research, 2016, 68 (19): 981- 994
doi: 10.1680/jmacr.15.00321
13 糜凯华, 武亮, 吕晓波, 等 三维球形随机骨料混凝土细观数值模拟[J]. 水电能源科学, 2014, 32 (11): 124- 128
MEI Kai-hua, WU Liang, LV Xiao-bo, et al Numerical simulation of mesostructure for concrete with 3D spherical random aggregate particles[J]. Water Resources and Power, 2014, 32 (11): 124- 128
14 华东水利学院. 水工设计手册(2): 地质水文建筑材料[M]. 北京: 水利电力出版社, 1984.
15 李运成, 马怀发, 陈厚群, 等 混凝土随机凸多面体骨料模型生成及细观有限元剖分[J]. 水利学报, 2006, 37 (5): 588- 592
LI Yun-cheng, MA Huai-fa, CHEN Hou-qun, et al Approach to generation of random convex polyhedral aggregate model and plotting for concrete meso-mechanics[J]. Journal of Hydraulic Engineering, 2006, 37 (5): 588- 592
doi: 10.3321/j.issn:0559-9350.2006.05.012
16 欧阳利军, 安子文, 杨伟涛, 等 混凝土界面过渡区(ITZ)微观特性研究进展[J]. 混凝土与水泥制品, 2018, (2): 7- 12
OUYANG Li-jun, AN Zi-wen, YANG Wei-tao, et al Research progress on microstructure characteristic of interface transition zone of concrete[J]. China Concrete and Cement Products, 2018, (2): 7- 12
doi: 10.3969/j.issn.1000-4637.2018.02.002
17 MATALA S. Effects of carbonation on the pore structure of granulated blast furnace slag concrete [D]. Helsinki: Helsinki University of Technology, 1995.
18 KONIORCZYK M, GAWIN D, SCHREFLER B A Modeling evolution of frost damage in fully saturated porous materials exposed to variable hygrothermal conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 297: 38- 61
doi: 10.1016/j.cma.2015.08.015
19 冀晓东, 宋玉普, 刘建 混凝土冻融损伤本构模型研究[J]. 计算力学学报, 2011, 28 (3): 461- 467
JI Xiao-dong, SONG Yu-pu, LIU Jian Study on frost damage constitutive model of concrete[J]. Chinese Journal of Computational Mechanics, 2011, 28 (3): 461- 467
doi: 10.7511/jslx201103026
20 PICANDET V, KHELIDJ A, BASTIAN G Effect of axial compressive damage on gas permeability of ordinary and high performance concrete[J]. Cement and Concrete Research, 2001, 31 (11): 1525- 1532
21 STéPHANE M, SELLIER A, PERRIN B Numerical analysis of frost effects in porous media. benefits and limits of the finite element poroelasticity formulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (4): 438- 458
doi: 10.1002/nag.1014
22 ZHOU W, TANG L, LIU X, et al Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model[J]. International Journal of Impact Engineering, 2016, 95 (9): 165- 175
[1] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[2] 王小虎,吉克尼都,陈珊,祁宇轩,彭宇,曾强. X射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报(工学版), 2021, 55(4): 727-732.
[3] 宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.
[4] 李睿鑫,邹贻权,胡大伟,周辉,王冲,周永祥,王祖琦. 高渗透压-硫酸盐侵蚀下混凝土时空劣化[J]. 浙江大学学报(工学版), 2021, 55(3): 539-547.
[5] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[6] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[7] 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟[J]. 浙江大学学报(工学版), 2020, 54(6): 1106-1114.
[8] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[9] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[10] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[11] 王海龙,吴远建,凌佳燕,孙晓燕. 锈蚀不锈钢筋与混凝土黏结性能退化[J]. 浙江大学学报(工学版), 2020, 54(5): 843-850.
[12] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[13] 孙晓燕,唐归,王海龙,汪群,张治成. 3D打印路径对混凝土拱桥结构力学性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2085-2091.
[14] 汪劲丰,张爱平,王文浩. 栓钉高度对栓钉连接件抗剪性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2076-2084.
[15] 王永贵,李帅鹏,HUGHESPeter,范玉辉,高向宇. 改性再生混凝土高温性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2047-2057.