Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (1): 71-80    DOI: 10.3785/j.issn.1008-973X.2021.01.009
土木工程、交通工程、水利工程     
沉水植物对水流结构与泥沙淤积的影响
孙志林(),郑佳芸,祝丽丽,种琳,刘俊,罗居元
浙江大学 海洋学院,浙江 杭州 310058
Influence of submerged vegetation on flow structure and sediment deposition
Zhi-lin SUN(),Jia-yun ZHENG,Li-li ZHU,Lin CHONG,Jun LIU,Ju-yuan LUO
Ocean College, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1885 KB)   HTML
摘要:

为了研究水生植物对水流结构和泥沙淤积的影响,针对不同布置的沉水植物进行33组浑水水槽试验. 结果表明,矮株植物区流速冠顶下为二次多项式分布,以上为对数分布;考虑相对株距的影响,建立矮株植物区紊动强度的双高斯垂线分布公式,按该公式计算的流速和紊动强度与实测资料较吻合. 高株植物区流速呈“C”型分布,紊动强度以冠顶附近最大. 3种株距布置时,混合植物冠顶以下平均流速为无植物时的32.5%~72.3%. 提出小弗汝德数(Fr≤0.18)条件下矮株植物区相对淤积增量与水流强度和相对株距的非线性关系. 在相同水流和株距下,混合植物淤积量高达无植物时的7倍,高株植物次之,随着株距的减小促淤效果逐渐增强.

关键词: 沉水植物流速分布紊动强度泥沙淤积    
Abstract:

Thirty-three sets of flume experiments were conducted under turbid water and submerged vegetation with different arrangements in order to analyze the influence of vegetation on flow structure and sediment deposition. Results showed that the velocity profile was parabola below the canopy of short vegetation while that was logarithmic above it. A bi-Gaussian distribution formula for turbulence intensity in short vegetation zone was established considering plant spacing. The predicted values of velocity and turbulence intensity accorded well with the measured values. Velocity profile is C-type while the largest turbulence is near the canopy in tall vegetation zone. Average velocity below canopy in mixed vegetation with three kinds of plant spacing was 32.5%-72.3% of that without vegetation. The nonlinear relation of relative deposition increment with flow intensity and plant spacing in short vegetation zone was proposed under small Froude number (Fr≤0.18). The deposition in mixed vegetation zone was the largest with 7 times of that without vegetation under the same flow and plant spacing, followed by that in tall vegetation zone. Effects of tall and mixed vegetation on deposition increased with the decrease of plant spacing.

Key words: submerged vegetation    velocity profile    turbulence intensity    sediment deposition
收稿日期: 2020-01-06 出版日期: 2021-01-05
CLC:  TV 143  
基金资助: 国家自然科学基金资助项目(91647209);三峡后续工作项目(12610100000018J129-06)
作者简介: 孙志林(1956—),男,教授,博导,从事水沙动力学及河口海岸数值模拟研究. E-mail: oceansun@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
孙志林
郑佳芸
祝丽丽
种琳
刘俊
罗居元

引用本文:

孙志林,郑佳芸,祝丽丽,种琳,刘俊,罗居元. 沉水植物对水流结构与泥沙淤积的影响[J]. 浙江大学学报(工学版), 2021, 55(1): 71-80.

Zhi-lin SUN,Jia-yun ZHENG,Li-li ZHU,Lin CHONG,Jun LIU,Ju-yuan LUO. Influence of submerged vegetation on flow structure and sediment deposition. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 71-80.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.01.009        http://www.zjujournals.com/eng/CN/Y2021/V55/I1/71

图 1  含植物试验水槽
图 2  矮株植物A和高株植物B
图 3  4种密度下植物的分布
试验
组次
u /
(m·s?1)
植物 试验
组次
流速/
(m·s?1)
植物 试验
组次
u /
(m·s?1)
植物
1 0.1 A1 12 0.15 A1 23 0.2 A1
2 0.1 A2 13 0.15 A2 24 0.2 A2
3 0.1 A3 14 0.15 A3 25 0.2 A3
4 0.1 A4 15 0.15 A4 26 0.2 A4
5 0.1 B1 16 0.15 B1 27 0.2 B1
6 0.1 B2 17 0.15 B2 28 0.2 B2
7 0.1 B3 18 0.15 B3 29 0.2 B3
8 0.1 M1 19 0.15 M1 30 0.2 M1
9 0.1 M2 20 0.15 M2 31 0.2 M2
10 0.1 M3 21 0.15 M3 32 0.2 M3
11 0.1 22 0.15 33 0.2
表 1  浑水水槽试验条件
图 4  矮株植物区流速分布
图 5  式(1)待定系数与相对株距的关系
图 6  矮株植物区点流速计算与实测值比较
图 7  高株和混合植物区流速垂向分布
图 8  矮株植物区x向紊动强度沿垂线分布
图 9  式(3)待定系数与相对株距的关系
图 10  矮株植物区x向紊动强度计算值与实测值的比较
图 11  矮株植物区z向紊动强度沿垂线分布
图 12  式(5)待定系数与相对株距的关系
图 13  矮株植物区z向紊动强度计算值与实测值的比较
图 14  不同密度下的高株植物区紊动强度
图 15  不同密度下的混合植物区紊动强度
图 16  不同植物的促淤效果
图 17  矮株植物相对淤积增量与Fr的关系
图 18  矮株植物区相对淤积增量计算值与实测值的比较
1 渠庚, 张小峰, 陈栋, 等 含柔性植物明渠水流阻力特性试验研究[J]. 水利学报, 2015, 46 (11): 1344- 1351
QU Geng, ZHANG Xiao-feng, CHEN Dong, et al Experimental study on flow resistance characteristics in open channel with flexible vegetation[J]. Journal of Hydraulic Engineering, 2015, 46 (11): 1344- 1351
2 HUAI W X, CHEN Z B, HAN J, et al Mathematical model for the flow with submerged and emerged rigid vegetation[J]. Journal of Hydrodynamics, 2009, 21 (5): 722- 729
doi: 10.1016/S1001-6058(08)60205-X
3 王忖, 王超 含挺水植物和沉水植物水流紊动特性[J]. 水科学进展, 2010, 21 (6): 816- 822
WANG Cun, WANG Chao Turbulent characteristics in open-channel flow with emergent and submerged macrophytes[J]. Advances in Water Science, 2010, 21 (6): 816- 822
4 LIGHTBODY A, NEPF H Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation[J]. Limnology and Oceanography, 2006, 51 (1): 218- 228
doi: 10.4319/lo.2006.51.1.0218
5 YANG W, CHOI S U A two-layer approach for depth-limited open-channel flows with submerged vegetation[J]. Journal of Hydraulic Research, 2010, 48 (4): 466- 475
doi: 10.1080/00221686.2010.491649
6 KLOPSTRA D, BARNEVELD H J, NOORTWIJK J M, et al. Analytical model for hydraulic roughness of submerged vegetation [C]// Proceedings of the 27th Congress-International Association for Hydraulic Research. San Francisco: [s. n.], 1997: 775-780.
7 HUTHOFF F, AUGUSTIJN D, HULSCHER S J M H Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation[J]. Water Resources Research, 2007, 43 (6): WR005625
8 SHI H R, LIANG X R, HUAI W X Predicting the bulk average velocity of open-channel flow with submerged rigid vegetation[J]. Journal of Hydrology, 2019, 572: 213- 225
doi: 10.1016/j.jhydrol.2019.02.045
9 NEPF H Flow and transport in regions with aquatic vegetation[J]. Annual Reviews of Fluid Mechanic, 2012, (44): 123- 142
10 SCHULZ M, KOZERSKI H P, PLUNTKE T, et al The influence of macrophytes on sedimentation and nutrient retention in the lower river spree (Germany)[J]. Water Research, 2003, 37 (3): 569- 578
doi: 10.1016/S0043-1354(02)00276-2
11 MA J M, WU Z B, XIAO E R, et al Adsorbablity and sedimentation effect of submerged macrophytes on suspended solids[J]. Fresecius Enviromental Bulletin, 2008, 17 (12B): 2175- 2179
12 FOLLETT E, NEPF H Particle retention in a submerged meadow and its variation near the leading edge[J]. Estuaries and Coasts, 2018, 41 (3): 724- 733
doi: 10.1007/s12237-017-0305-3
13 LIU C, NEPF H Sediment deposition within and around a finite patch of model vegetation over a range of channel velocity[J]. Water Resources Research, 2016, 52 (1): 600- 612
doi: 10.1002/2015WR018249
14 ELLIOTT A H Settling of fine sediment in a channel with emergent vegetation[J]. Journal of Hydraulic Engineering, 2000, 126 (8): 570- 577
doi: 10.1061/(ASCE)0733-9429(2000)126:8(570)
[1] 胡云进, 郜会彩, 耿洛桑, 等. 梯形断面明渠流速分布的研究[J]. J4, 2009, 43(6): 1102-1106.
[2] 胡云进 万五一 蔡甫款 毛根海 谢放. 窄深矩形断面明渠流速分布的研究[J]. J4, 2008, 42(1): 183-187.