Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (8): 1602-1609    DOI: 10.3785/j.issn.1008-973X.2019.08.019
电气工程、机械工程     
基于水压直驱的软体单元的动静态特性
陈英龙(),闫迪,张增猛*(),宁大勇,弓永军
大连海事大学 船舶与海洋工程学院,辽宁 大连 116026
Static and dynamic characteristics of soft unit based on hydraulic straight drive
Ying-long CHEN(),Di YAN,Zeng-meng ZHANG*(),Da-yong NING,Yong-jun GONG
Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
 全文: PDF(1312 KB)   HTML
摘要:

提出水压直驱纤维增强软体单元,采用伺服电机驱动水压缸实现软体运动控制,搭建试验台开展软体单元动静态特性研究. 针对软体单元输出力、径向膨胀、弯曲角度及刚度等性能开展静态试验. 结果表明,软体单元驱动压力为影响输出力和弯曲角度的主要因素;当输入压力增加时,软体最大径向膨胀速率为3%;当输入压力为0.3 MPa、末端位移为4 mm时,水压驱动输出力为4.3 N,与气压驱动相比,软体刚度增加0.025 N/mm. 建立水压直驱软体单元动力学模型,围绕软体单元弯曲角度、压力响应进行仿真分析及试验验证. 结果表明,水压直驱软体单元模型仿真与实测结果较吻合,弯曲角度稳定误差为1.70%,驱动水压稳定误差为0.33%. 研究成果表明采用水液压驱动软体机器人可提高其性能.

关键词: 水压直驱纤维增强软体单元动静态特性动力学模型    
Abstract:

A fiber-reinforced soft unit directly driven by water pressure was proposed and the servo motor was used to drive the hydraulic cylinder to realize the motion control of the soft unit. The static and dynamic characteristics of soft units were studied by setting up a test bed. Static tests were carried out on output force, radial expansion, bending angle and stiffness of the soft unit. Results showed that the driving force of the soft unit was the main factor affecting the output force and the bending angle. The maximum radial expansion rate of the soft unit was 3% as the input pressure increased. When the input pressure was 0.3 MPa and the end displacement was 4 mm, the output force of hydraulic drive was 4.3 N, and the stiffness of soft unit was 0.025 N/mm higher than that in the situation of air pressure drive. The dynamic model of soft unit was established, and the simulation analysis and experimental verification were conducted on the bending angle and the pressure response of the soft unit. Results showed that the simulation results of the hydraulic straight drive soft unit model were in good agreement with the measured results. The stability error values of bending angle and driving water pressure were 1.70% and 0.33%, respectively. Results show that water hydraulic drive can improve the performance of soft robots.

Key words: hydraulic straight drive    fiber reinforcement    soft unit    static and dynamic characteristics    dynamic model
收稿日期: 2018-08-10 出版日期: 2019-08-13
CLC:  TP 242  
通讯作者: 张增猛     E-mail: chenyinglong@dlmu.edu.cn;zzm.zju@163.com
作者简介: 陈英龙(1984—),男,讲师,从事水压驱动软体机器人、海洋机电装备、流体传动及控制研究. orcid.org/0000-0002-2149-093x. E-mail: chenyinglong@dlmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈英龙
闫迪
张增猛
宁大勇
弓永军

引用本文:

陈英龙,闫迪,张增猛,宁大勇,弓永军. 基于水压直驱的软体单元的动静态特性[J]. 浙江大学学报(工学版), 2019, 53(8): 1602-1609.

Ying-long CHEN,Di YAN,Zeng-meng ZHANG,Da-yong NING,Yong-jun GONG. Static and dynamic characteristics of soft unit based on hydraulic straight drive. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1602-1609.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.08.019        http://www.zjujournals.com/eng/CN/Y2019/V53/I8/1602

图 1  软体单元工作原理简图
图 2  软体单元模型图与实物图
图 3  水压直驱动力源系统
图 4  三自由度试验台
图 5  端部力试验的软体单元布局图
图 6  软体单元姿态变化与径向膨胀简图
图 7  软体单元径向膨胀量随压力变化的曲线
图 8  软体单元驱动压力与输出力的试验曲线
图 9  流体体积与软体驱动压力/弯曲角度的试验曲线
图 10  软体刚度模型组成简图
图 11  水压与气压驱动软体的刚度试验曲线对比
图 12  水压驱动系统原理简图
参数 数值 参数 数值
k1 1 VL 2×10?3 L
k2 80 u 9.19×10?6 kPa·s
τ 0.01 s m 0.24 kg
AL 1.726×10?3 m2 B1 1
A1 2×10?5 m2 B2 200
AW 3×10?4 m2 f0 30 N
VW 5×10?4 L J 0.01
l 0.1 m K2 2.18×10?9 Pa
表 1  水压直驱系统及软体单元仿真参数
图 13  角度随时间变化的试验与仿真曲线
图 14  动态试验中软体内部压力随时间变化曲线
1 MAO S, DONG E, JIN H, et al Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs[J]. Journal of Bionic Engineering, 2014, 11: 400- 411
doi: 10.1016/S1672-6529(14)60053-6
2 TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1 (3): 213- 223
doi: 10.1089/soro.2014.0008
3 FEI Y, PANG W Analysis on nonlinear turning motion of multi-spherical soft robots[J]. Nonlinear Dynamics, 2016, 1: 1- 10
4 ANDRIKOPOULOS G, NIKOLAKOPOULOS G, MANESIS S. A survey on applications of pneumatic artificial muscles [C]// Control and Automation. [S.l.]: IEEE, 2011: 1439-1446.
5 MOSASWGH B, POLYGERINOS P, KEPLINGER C, et al Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24 (15): 2163- 2170
doi: 10.1002/adfm.v24.15
6 MARCHESE A D, ONAL C D, RUS D Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1 (1): 75- 87
doi: 10.1089/soro.2013.0009
7 SFAKIOTAKIS M, KAZAKIDI A, TSAKIRIS D P Octopus-inspired multi-arm robotic swimming[J]. Bioinspiration and Biomimetics, 2015, 10 (3): 035005
doi: 10.1088/1748-3190/10/3/035005
8 HAO Y F, GONG Z Y, XIE Z X, et al. Universal soft pneumatic robotic gripper with variable effective length [C]// Proceedings of the 35th Chinese Control Conference. Chengdu: IEEE, 2016: 7554316.
9 DEIMEL R, BROCK O A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2015, 35 (1): 161- 185
10 MORIN S A, SHEPHERD R F, KWOK S W, et al Camouflage and display for soft machines[J]. Science, 2012, 337 (6096): 828- 832
doi: 10.1126/science.1222149
11 LIN H T, LEISK G G, TRIMMER B GoQBot: a caterpillar-inspired soft-bodied rolling robot[J]. Bioinspiration and Biomimetics, 2011, 6 (2): 026007
doi: 10.1088/1748-3182/6/2/026007
12 杜勇. 具有多运动模式的可变形软体机器人研究[D]. 合肥: 中国科学技术大学, 2013.
DU Yong. Research on flexible soft robot with multi-motion mode [D]. Hefei: University of Science and Technology of China, 2013.
13 SHEPHERD R F, ILIEVSKI F, CHOI W, et al Multigait soft robot[J]. Proceedings of the National Academy of Sciences, 2011, 108 (51): 20400- 20403
doi: 10.1073/pnas.1116564108
14 POLYGERINOS P, WANG Z, GALLOWAY K C, et al Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73 (C): 135- 143
15 YOSHINADA H, YAMAZAKI T, SUWA T, et al. Seawater hydraulic actuator system for underwater manipulator [C]// Proceedings of the 5th International Conference on Advanced Robotics. Pisa: [s.n.], 1991: 1330-1335.
16 MAYUKO M, KOICHI S, MASAYUKI T, et al Very high force hydraulic McKibben artificial muscle with a p-phenylene-2,6-benzobisoxazole cord sleeve[J]. Advanced Robotics, 2010, 24 (1/2): 233- 254
17 刘桓龙, 许明恒, 柯坚, 等 水压驱动技术[J]. 中国机械工程, 2002, 13 (6): 534- 536
LIU Huan-long, XU Ming-heng, KE Jian, et al Hydraulic drive technology[J]. China Mechanical Engineering, 2002, 13 (6): 534- 536
doi: 10.3321/j.issn:1004-132X.2002.06.026
[1] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[2] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[3] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[4] 张铁,肖蒙,邹焱飚,肖佳栋. 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1865-1873.
[5] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[6] 张铁, 梁骁翃. 平面关节型机器人关节力矩的卡尔曼估计[J]. 浙江大学学报(工学版), 2018, 52(5): 951-959.
[7] 郑钰馨, 奚鹰, 卜王辉, 李梦如. RV减速器5自由度纯扭转模型非线性特性分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2098-2109.
[8] 陈昭晖, 倪一清. 自传感磁流变阻尼器实时阻尼力跟踪控制[J]. 浙江大学学报(工学版), 2017, 51(8): 1551-1558.
[9] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.
[10] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[11] 诸葛萍, 丁勇, 侯苏伟, 强士中. 新型CFRP筋锚具优化设计及疲劳性能试验[J]. 浙江大学学报(工学版), 2014, 48(10): 1822-1827.
[12] 魏春雨, 周晓军, 魏燕定, 唐昉. 基于Vortex的6自由度平台洗出运动仿真[J]. J4, 2012, 46(8): 1390-1396.
[13] 孔天荣,李欣,梅德庆,陈子辰. 磁流变智能镗杆的动力学模型[J]. J4, 2010, 44(11): 2050-2055.
[14] 姚谏 朱晓旭 周延阳. 混凝土表层嵌贴CFRP板条的黏结承载力[J]. J4, 2008, 42(1): 34-38.
[15] 文丽华 王树荣 骆仲泱 王琦 施海云 方梦祥 岑可法. 生物质的多组分热裂解动力学模型[J]. J4, 2005, 39(2): 247-252.