Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (8): 1610-1617    DOI: 10.3785/j.issn.1008-973X.2019.08.020
化学工程、生物工程     
Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性
侯世成(),任王瑜,朱清,陈卫祥*()
浙江大学 化学系,浙江 杭州 310013
Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction
Shi-cheng HOU(),Wang-yu REN,Qing ZHU,Wei-xiang CHEN*()
Department of Chemistry, Zhejiang University, Hangzhou 310013, China
 全文: PDF(1343 KB)   HTML
摘要:

为了制备高效、低成本的析氢反应电催化剂,采用一步水热法制备镍掺杂二硫化钼/石墨烯复合材料(Nix-MoS2/G,x=0.03,0.05,0.10),并用X-射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)和X-射线光电子能谱(XPS)对其进行表征,讨论镍掺杂对复合材料的微观结构和电催化析氢性能的影响. 结果表明,与MoS2/G催化剂相比,镍掺杂的MoS2/G催化剂显示了更高的电催化析氢性能,尤其当水热反应体系中的Ni和Mo的摩尔比为1∶20时,制备的Ni0.05-MoS2/G显示了最强的电催化析氢性能,其塔菲尔斜率为50.8 mV/dec. 电催化活性的增强主要是由于少量镍的掺杂改变了复合催化剂的形貌,使MoS2纳米片更好地负载在石墨烯表面,暴露出更多的催化活性位点,同时镍掺杂提高了MoS2边缘活性位的固有催化活性.

关键词: 析氢反应电催化水热反应复合材料二硫化钼(MoS2    
Abstract:

In order to develop cost-effective electrocatalysts for hydrogen evolution reaction (HER), Ni-doped MoS2/graphene (Nix-MoS2/G, x=0.03, 0.05, 0.10) hybrids were fabricated by one-pot hydrothermal method. The hybrids were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectroscopy (XPS). The effects of Ni-doping on the microstructure and the electrocatalytic HER activity of the hybrids were investigated. Results showed that the Ni-doped MoS2/G catalysts exhibited better electrocatalytic HER activity than MoS2/G catalyst. Among these hybrids, the Ni0.05-MoS2/G hybrid (the mole ratio of Ni∶Mo for 1∶20 in the hydrothermal reaction system) exhibited the highest electrocatalytic HER activity with a Tafel slope of 50.8 mV/dec. The improvement of electrocatalytic activity can be contributed to that the rotational Ni-doping changes the morphology of the hybrid in which MoS2 nanosheets can be well dispersed on the surface of graphene and more active sites for HER are displayed. In addition, Ni-doping enhances the intrinsic catalytic activity of MoS2 edge sites for HER.

Key words: hydrogen evolution reaction    electrocatalyst    hydrothermal reaction    composite    molybdenum disulfide (MoS2)
收稿日期: 2018-05-11 出版日期: 2019-08-13
CLC:  TQ 116  
通讯作者: 陈卫祥     E-mail: shicheng_hou@163.com;weixiangchen@zju.edu.cn
作者简介: 侯世成(1992—),男,硕士生,从事电催化析氢研究. orcid.org/0000-0001-5322-0232. E-mail: shicheng_hou@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
侯世成
任王瑜
朱清
陈卫祥

引用本文:

侯世成,任王瑜,朱清,陈卫祥. Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性[J]. 浙江大学学报(工学版), 2019, 53(8): 1610-1617.

Shi-cheng HOU,Wang-yu REN,Qing ZHU,Wei-xiang CHEN. Synthesis of Ni-doped MoS2/graphene hybrids and their electrocatalytic activity for hydrogen evolution reaction. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1610-1617.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.08.020        http://www.zjujournals.com/eng/CN/Y2019/V53/I8/1610

图 1  水热合成样品的XRD图
图 2  水热合成样品的SEM图
图 3  水热合成样品的TEM/HRTEM图像
图 4  Ni0.05-MoS2/G复合材料的XPS高分辨率扫描图
图 5  不同催化电极上析氢反应的极化曲线及其Tafel斜率
图 6  Ni0.05-MoS2/G催化剂在不同扫速下的循环伏安曲线和电流密度曲线
图 7  不同催化电极上析氢反应的转换频率
图 8  不同催化电极上HER电化学阻抗谱的Nyquist图和相应的等效电路模型
电极 Rs Rct
MoS2 6.1 1 359
MoS2/G 5.3 630
Ni0.03-MoS2/G 5.0 347
Ni0.05-MoS2/G 5.2 185
Ni0.1-MoS2/G 5.5 451
表 1  电化学阻抗拟合所得动力学参数
1 CHU S, MAJUMDAR A Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488 (7411): 294- 303
doi: 10.1038/nature11475
2 EFTEKHARI A Electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2017, 42 (16): 53- 77
3 CHEN Y, YANG K, JIANG B, et al Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution[J]. Journal of Materials Chemistry A, 2017, 5 (18): 187- 208
4 GUPTA U, RAO C Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides [J]. Nano Energy, 2017, 41: 49- 65
doi: 10.1016/j.nanoen.2017.08.021
5 王晓, 姚晓莉, 侯鉴峰, 等 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报: 工学版, 2014, 48 (7): 1273- 1277
WANG Xiao, YAO Xiao-li, HOU Jian-feng, et al Non-isothermal crystallization of aqueous graphene oxide suspensions[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (7): 1273- 1277
6 LI Y G, WANG H L, XIE L M, et al MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction [J]. Journal of the American Chemical Society, 2011, 133 (19): 6- 9
7 YIN Y, MIAO P, ZHANG Y, et al Significantly increased raman enhancement on MoX2 (X = S, Se) monolayers upon phase transition [J]. Advanced Functional Materials, 2017, 27 (16): 16066- 16094
8 BONDE J, MOSES P G, JARAMILLO T F, et al Hydrogen evolution on nano-particulate transition metal sulfides[J]. Faraday Discuss, 2008, 140: 19- 31
9 JARAMILLO T F, JORGENSEN K P, BONDE J, et al Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J]. Science, 2007, 317 (5834): 100- 102
doi: 10.1126/science.1141483
10 MERKI D, VRUBEL H, ROVELLI L, et al Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution[J]. Chemical Science, 2012, 3 (8): 15- 25
11 WANG H, TSAI C, KONG D, et al Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution [J]. Nano Research, 2015, 8 (2): 566- 575
doi: 10.1007/s12274-014-0677-7
12 HUMMERS W S, OFFEMAN R E Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339
doi: 10.1021/ja01539a017
13 XU J, ZHANG J J, ZHANG W J, et al Interlayer nanoarchitectonics of two-dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications[J]. Advanced Energy Materials, 2017, 7 (23): 1700571
doi: 10.1002/aenm.v7.23
14 YE J, YU Z, CHEN W, et al Ionic-liquid mediated synthesis of molybdenum disulfide/graphene composites: an enhanced electrochemical hydrogen evolution catalyst[J]. International Journal of Hydrogen Energy, 2016, 41 (28): 49- 61
15 SAHOO M, RAMAPRABHU S One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery [J]. Carbon, 2018, 127: 27- 35
16 WU L, XU X, ZHAO Y, et al Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution [J]. Applied Surface Science, 2017, 425: 470- 477
doi: 10.1016/j.apsusc.2017.06.223
17 WANG D, ZHANG X, SHEN Y, et al Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts [J]. RSC Advances, 2016, 6 (20): 56- 61
18 YIN Y, HAN J, ZHANG Y, et al Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138 (25): 7965- 7972
doi: 10.1021/jacs.6b03714
19 LEYRAL G, BRILLOUET S, ROUSSEAU J, et al Effect of the presence of ionic liquid during the NiMoS bulk preparation in the transformation of decanoic acid[J]. Applied Catalysis A: General, 2017, 532: 120- 132
doi: 10.1016/j.apcata.2016.12.020
20 MA C B, QI X, CHEN B, et al MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction [J]. Nanoscale, 2014, 6 (11): 4- 9
21 WANG D Z, PAN Z, WU Z Z, et al Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts [J]. Journal of Power Sources, 2014, 264: 229- 234
doi: 10.1016/j.jpowsour.2014.04.066
22 MA L, XU L M, XU X Y, et al Cobalt-doped edge-rich MoS2/nitrogenated graphene composite as an electrocatalyst for hydrogen evolution reaction [J]. Materials Science and Engineering: B, 2016, 212: 30- 38
doi: 10.1016/j.mseb.2016.07.014
23 LV X J, SHE G W, ZHOU S X, et al Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts[J]. RSC Advances, 2013, 3 (44): 21231- 21236
doi: 10.1039/c3ra42340a
24 YIN X Y, YAN Y, MIAO M, et al Quasi-emulsion confined synthesis of edge-rich ultrathin MoS2 nanosheets/graphene hybrid for enhanced hydrogen evolution [J]. Chemistry: A European Journal, 2018, 24 (3): 556- 560
doi: 10.1002/chem.v24.3
25 TANG C, WANG W, SUN A, et al Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution[J]. ACS Catalysis, 2015, 5 (11): 6956- 6963
doi: 10.1021/acscatal.5b01803
[1] 严守靖,王洋洋,迟凤霞,罗雪. 空心玻璃微珠/纳米TiO2复合材料的制备与表征[J]. 浙江大学学报(工学版), 2021, 55(4): 713-719.
[2] 任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.
[3] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[4] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[5] 李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.
[6] 解五一,高霄,何思宇,肖晓晖. 面向复合材料自动铺放设备的输带速度与张力协同解耦控制[J]. 浙江大学学报(工学版), 2019, 53(3): 455-462.
[7] 王激扬, 马卫强, 胡志华, 万成霖. PE纤维掺量对水泥基复合材料力学性能的影响[J]. 浙江大学学报(工学版), 2017, 51(11): 2130-2135.
[8] 周二振,应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1671-1676.
[9] 刘肃肃,余音. 复材非线性及渐进损伤的态型近场动力学模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 993-1000.
[10] 倪楠楠, 温月芳, 贺德龙, 王程成, 益小苏, 许亚洪. 功能无纺布插层复合材料的结构阻尼性能[J]. 浙江大学学报(工学版), 2016, 50(2): 353-359.
[11] 张旭,刘建忠,吴君宏,赵琛杰,周俊虎,岑可法. 水分随煤阶及水热变化的核磁共振研究[J]. 浙江大学学报(工学版), 2016, 50(1): 123-128.
[12] 陈艳,高尚君,于哲峰,汪海. 复合材料翼盒低速冲击分层阈值力模型[J]. 浙江大学学报(工学版), 2016, 50(1): 186-192.
[13] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433.
[14] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[15] 柯俊,史文库,钱琛,李国民,袁可. 复合材料板簧刚度的预测及匹配设计方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2103-2110.