Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (8): 1457-1466    DOI: 10.3785/j.issn.1008-973X.2019.08.004
土木与建筑工程     
开挖诱发坑内既有基桩附加内力的模型试验
唐德琪1,2(),俞峰1,2,*(),黄祥国3,陈海兵1,2,夏唐代4
1. 浙江理工大学 基础结构技术研究所,浙江 杭州 310018
2. 浙江省装配式混凝土工业化建筑工程技术研究中心,浙江 杭州 310018
3. 武汉市市政建设集团有限公司,湖北 武汉 430023
4. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation
De-qi TANG1,2(),Feng YU1,2,*(),Xiang-guo HUANG3,Hai-bing CHEN1,2,Tang-dai XIA4
1. Institute of Foundation and Structure Technologies, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Zhejiang Provincial Engineering and Technology Research Center of Assembly-Concrete Industrialized Buildings, Hangzhou 310018, China
3. Wuhan Municipal Construction Group Co. Ltd, Wuhan 430023, China
4. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1787 KB)   HTML
摘要:

既有建筑下挖改造引起的基坑被动区土体侧移会对坑内基桩承载性产生重要影响. 通过室内模型试验研究坑内基桩在被动区土体侧移作用下的桩身受力特性,重点分析支护结构与坑内基桩距离、开挖深度、桩顶竖向荷载及承台约束高度对基桩弯矩和剪力的影响. 试验结果表明,在悬臂式支护开挖条件下,被动区土体位移模式呈倒三角形,基桩弯矩和剪力沿桩身分布具有多个异号峰值,桩身自上而下可分为开挖裸露段、被动受荷段和主动作用段. 基桩与支护水平间距越小、基坑下挖深度越大,基桩各部位弯矩和剪力越大,且竖向受荷和桩身侧向变形的耦合效应将使桩身弯矩变大. 桩顶约束高度的改变会对基桩弯矩和剪力产生影响,在其他条件相同时,约束高度越大,基桩弯矩和剪力越小. 研究结果可为地下增层工程的设计提供支撑.

关键词: 地下增层模型试验基桩弯矩剪力    
Abstract:

The lateral displacement of passive soil induced by the excavation of existing buildings has significant impact on the bearing capacity of foundation piles within the pit. The load-bearing characteristics of foundation piles under the lateral movement of the passive soil were investigated through indoor model experiments. Focus was paid on the influences on the pile’s bending moment and shear force of a few factors such as the spacing between retaining and foundation piles, the excavation depth, the axial loading level at the top of the pile and the height of cap restraint. Results showed that under the cantilevered supported excavation condition, the displacement pattern of the passive soil resembled an inverted triangle. The bending moment and the shear force of the foundation pile had several heterogeneous peaks distributed along the pile. Based on this, the foundation pile from top to bottom was divided into three sections, i.e. the excavation-exposed section, the passive-load section and the active-effect section. The smaller the distance between the supporting and foundation piles and the deeper the excavation depth, the greater the bending moment and the shear force induced along the foundation pile. The coupling effect of axial loading and lateral displacement will further increase the bending moment of the foundation pile. The change of the height of the pile top restraint will affect the bending moment and the shear force of the pile. With other conditions being the same, the greater the height of the pile top restraint, the smaller the bending moment and the shear force of the pile. The research results can provide support for the engineering design of underground-storey supplement.

Key words: underground storey supplement    model test    foundation pile    bending moment    shear force
收稿日期: 2018-06-08 出版日期: 2019-08-13
CLC:  TU 473  
通讯作者: 俞峰     E-mail: 1749569869@qq.com;pokfulam@zstu.edu.cn
作者简介: 唐德琪(1993—),男,硕士生,从事基础工程研究. orcid.org/0000-0002-0909-0714. E-mail: 1749569869@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
唐德琪
俞峰
黄祥国
陈海兵
夏唐代

引用本文:

唐德琪,俞峰,黄祥国,陈海兵,夏唐代. 开挖诱发坑内既有基桩附加内力的模型试验[J]. 浙江大学学报(工学版), 2019, 53(8): 1457-1466.

De-qi TANG,Feng YU,Xiang-guo HUANG,Hai-bing CHEN,Tang-dai XIA. Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1457-1466.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.08.004        http://www.zjujournals.com/eng/CN/Y2019/V53/I8/1457

图 1  地下增层诱发的基桩附加效应示意图
图 2  试验模型箱示意图
图 3  应变采集模型桩示意图
图 4  地下增层开挖模型试验示意图
图 5  单桩静载试验的荷载-沉降曲线
L/cm h=0 cm h=10 cm
P=0 N P=25 N P=50 N P=0 N
10 G1 G2 G3 G13
15 G4 G5 G6 ?
20 G7 G8 G9 ?
25 G10 G11 G12 ?
表 1  地下增层开挖模型试验分组方案
图 6  支护桩桩顶转角和位移随开挖深度的变化
图 7  不同开挖深度下支护桩桩身弯矩分布
图 8  不同开挖深度下支护桩挠度的变化
图 9  不同开挖深度下工程桩G1的弯矩分布
图 10  不同开挖深度下工程桩G1的剪力分布
图 11  开挖深度为40 cm时不同间距下的桩身弯矩分布
图 12  开挖深度为40 cm时不同间距下的桩身剪力分布
图 13  不同间距下的桩身弯矩峰值变化
图 14  不同间距下桩身剪力峰值变化
图 15  地下增层条件下的既有建筑工程桩模型
图 16  不同承台高度下的桩身弯矩对比
图 17  不同承台高度下的桩身剪力对比
图 18  不同开挖深度下工程桩G2、G3沿桩身的轴力分布
图 19  轴向荷载对桩身弯矩的影响
图 20  各试桩桩身最大弯矩的变化
1 马景月 城市地下空间与开发利用规划[J]. 地下空间, 2002, 22 (3): 200- 208
MA Jing-yue Urban underground space and development and utilization planning[J]. Chinese Journal of Underground Space, 2002, 22 (3): 200- 208
doi: 10.3969/j.issn.1673-0836.2002.03.003
2 苟尧泊, 俞峰, 夏唐代 增层开挖引起的既有预制桩残余应力释放分析[J]. 浙江大学学报: 工学版, 2015, 49 (5): 969- 974
GOU Yao-bo, YU Feng, XIA Tang-dai Release of residual stress in existing preformed pile due to further excavation beneath pile raft[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (5): 969- 974
3 伍程杰, 龚晓南, 俞峰, 等 既有高层建筑地下增层开挖柱端阻力损失[J]. 浙江大学学报: 工学版, 2015, 48 (4): 671- 678
WU Cheng-jie, GONG Xiao-nan, YU Feng, et al Pile base resistance loss for excavation beneath existing high-rise building[J]. Journal of Zhejiang University: Engineering Science, 2015, 48 (4): 671- 678
4 单华峰, 夏唐代, 俞峰, 等 软土地区地下室增层开挖对既有桩基沉降性状的影响[J]. 中南大学学报: 自然科学版, 2016, 47 (6): 1995- 2000
SHAN Hua-feng, XIA Tang-dai, YU Feng, et al Settlement analysis of building piles associated with excavation beneath existing basement in soft soil[J]. Journal of Central South University: Engineering Science, 2016, 47 (6): 1995- 2000
5 单华峰, 夏唐代, 俞峰, 等 下挖增层桩顶约束对基桩屈曲稳定临界荷载影响分析[J]. 岩土工程学报, 2017, 39 (增2): 49- 52
SHAN Hua-feng, XIA Tang-dai, YU Feng, et al Critical buckling capacity of piles with different pile-head constraints for excavation beneath existing foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (增2): 49- 52
6 杨敏, 朱碧堂, 陈福全, 等 堆载引起某厂房坍塌事故的初步分析[J]. 岩土工程学报, 2002, 24 (4): 446- 450
YANG Min, ZHU Bi-tang, CHEN Fu-quan, et al Pilot study on collapse of an industrial building due to adjacent surcharge loads[J]. Chinese Journal of Geotechnical Engineering, 2002, 24 (4): 446- 450
doi: 10.3321/j.issn:1000-4548.2002.04.008
7 BYRNE P M, ANDERSON D L, JANZEN W Response of piles and casings to horizontal free-field soil displacements[J]. Canadian Geotechnical Journal, 1984, 21 (4): 720- 725
doi: 10.1139/t84-079
8 杨敏, 周洪波 承受侧向土体位移桩基的一种耦合算法[J]. 岩石力学与工程学报, 2005, 24 (24): 4491- 4497
YANG Min, ZHOU Hong-bo A coupling analytical solution of piles subjected to lateral soil movements[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (24): 4491- 4497
doi: 10.3321/j.issn:1000-6915.2005.24.015
9 GOH A T C, WONG K S Analysis of piles subjected to embankment induced lateral soil movements[J]. Journal of Geotechnical Engineering, ASCE, 1997, 123 (9): 792- 801
doi: 10.1061/(ASCE)1090-0241(1997)123:9(792)
10 梁发云, 于峰, 李镜培, 等 土体水平位移对邻近既有桩基承载性状影响分析[J]. 岩土力学, 2010, 31 (2): 449- 454
LIANG Fa-yun, YU Feng, LI Jing-pei, et al Analysis of the bearing capacity of a single pile under adjacent building subjected to lateral soil movements[J]. Rock and Soil Mechanics, 2010, 31 (2): 449- 454
doi: 10.3969/j.issn.1000-7598.2010.02.020
11 梁发云, 廖晨聪, 毛磊, 等 竖向-水平荷载联合作用下单桩性状模型试验研究[J]. 建筑结构, 2013, 43 (6): 92- 98
LIANG Fa-yun, LIAO Chen-cong, MAO Lei, et al Model tests on the behavior of a single pile under vertical-horizontal load[J]. Building Structure, 2013, 43 (6): 92- 98
12 姚国胜, 梁发云, 李镜培, 等 土体侧移作用下轴向荷载单桩承载性状数值分析[J]. 同济大学学报: 自然科学版, 2011, 39 (1): 1- 6
YAO Guo-sheng, LIANG Fa-yun, LI Jing-pei, et al 3D numerical analysis for behavior of axially loaded pile subjected to lateral soil movement[J]. Journal of Tongji University: Nature Science, 2011, 39 (1): 1- 6
13 袁炳祥, 吴跃东, 陈锐, 等 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报: 工学版, 2016, 50 (10): 2031- 2036
YUAN Bing-Xiang, WU Yue-dong, CHEN Rui, et al Model tests displacement field of internal soil induced by laterally loading pile[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (10): 2031- 2036
14 龚晓南, 伍程杰, 俞峰, 等 既有地下室增层开挖引起的桩基侧摩阻力损失分析[J]. 岩土工程学报, 2013, 35 (11): 1957- 1964
GONG Xiao-nan, WU Cheng-jie, YU Feng, et al Shaft resistance loss of piles due to excavation beneath existing basements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (11): 1957- 1964
15 苟尧泊. 地下增层改造条件下黏土材料与混凝土基桩的界面剪切行为[D]. 杭州: 浙江理工大学, 2015.
GOU Yao-bo. Interface shear behavior between clayey soil material and concrete foundation pile subjected to basement-supplement retrofit [D]. Hangzhou: Zhejiang Sci-Tech University, 2015.
16 郑刚, 聂冬清, 程雪松, 等 基坑分级支护的模型试验研究[J]. 岩土工程学报, 2017, 39 (5): 784- 793
ZHENG Gang, NIE Dong-qing, CHENG Xue-song, et al Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (5): 784- 793
doi: 10.11779/CJGE201705002
17 LEUNG C F, CHOW Y K, SHEN R F Behaviour of pile subject to excavation-induced soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126 (11): 947
doi: 10.1061/(ASCE)1090-0241(2000)126:11(947)
18 POULOS H G Analysis of piles in soil undergoing lateral movement[J]. Journal of Soil Mechanics and Foundation Engineering, 1973, 99 (SM5): 391
19 TERZAGHI K. Theoretical soil mechanics [M]. New York: John Wiley and Sons, 1943: 12–18.
20 彭述权. 砂土挡墙破坏机理宏细观研究[D]. 上海: 同济大学, 2007.
PENG Shu-quan. Macro-scale and meso-scale study on failure mechanism of sand retaining wall [D]. Shanghai: Tongji University, 2007.
[1] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[2] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[3] 赖杰,刘云,辛建平,王炜,高成强,朱海波. 大理西站支护边坡振动台试验及数值模拟[J]. 浙江大学学报(工学版), 2020, 54(5): 870-878.
[4] 全学友,衡倩,李雄宋,刘连杰. 混凝土中黏结型锚栓剪切试验方法[J]. 浙江大学学报(工学版), 2020, 54(4): 748-758.
[5] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[6] 张超, 臧勇, 管奔, 秦勤. 基于曲率积分的双金属复合板辊式矫直过程解析[J]. 浙江大学学报(工学版), 2017, 51(8): 1575-1586.
[7] 牛纪强,梁习锋,周丹,刘堂红. 动车组过隧道时设备舱气动效应动模型试验[J]. 浙江大学学报(工学版), 2016, 50(7): 1258-1265.
[8] 胡平川, 周建, 温晓贵, 陈宇翔, 李一雯. 电渗-堆载联合气压劈裂的室内模型试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1434-1440.
[9] 王国庆, 程壮, 王振宇, 陈枫, 张毅. 带剪力键钢板-高强灌浆体的抗剪承载力[J]. 浙江大学学报(工学版), 2015, 49(7): 1282-1287.
[10] 余志武, 彭晓丹, 国巍, 彭妙培. 装配式剪力墙U型套箍连接节点抗震性能[J]. 浙江大学学报(工学版), 2015, 49(5): 975-984.
[11] 周佳锦,龚晓南,王奎华,张日红,严天龙. 静钻根植竹节桩荷载传递机理模型试验[J]. 浙江大学学报(工学版), 2015, 49(3): 531-537.
[12] 童根树,杨章,张磊. 钢板剪力墙单侧加劲肋的有效抗弯刚度[J]. 浙江大学学报(工学版), 2015, 49(11): 2151-2158.
[13] 伍程杰, 龚晓南, 俞峰, 楼春晖, 刘念武. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报(工学版), 2014, 48(4): 671-678.
[14] 陆金钰,唐屹,舒赣平,王恒华. 不等高开缝钢板剪力墙滞回性能分析[J]. 浙江大学学报(工学版), 2014, 48(11): 1968-1975.
[15] 何余良,项贻强,李少俊,刘丽思. 基于不同抛物线翘曲函数组合箱梁剪力滞[J]. 浙江大学学报(工学版), 2014, 48(11): 1933-1940.