计算机与自动化技术 |
|
|
|
|
特征图聚集多尺度行人检测高效算法 |
陈昀( ),蔡晓东*( ),梁晓曦,王萌 |
桂林电子科技大学 信息与通信学院,广西 桂林,541004 |
|
Efficient multi-scale pedestrian detection algorithm withfeature map aggregation |
Yun CHEN( ),Xiao-dong CAI*( ),Xiao-xi LIANG,Meng WANG |
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China |
引用本文:
陈昀,蔡晓东,梁晓曦,王萌. 特征图聚集多尺度行人检测高效算法[J]. 浙江大学学报(工学版), 2019, 53(6): 1218-1224.
Yun CHEN,Xiao-dong CAI,Xiao-xi LIANG,Meng WANG. Efficient multi-scale pedestrian detection algorithm withfeature map aggregation. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1218-1224.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.022
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1218
|
1 |
许言午, 曹先彬, 乔红 行人检测系统研究新进展及关键技术展望[J]. 电子学报, 2008, 36 (5): 962- 968 XU Yan-wu, CAO Xian-bin, QIAO hong Survey on the latest development of pedestrian detection system and its key technologies expectation[J]. Acta Electronica Sinica, 2008, 36 (5): 962- 968
doi: 10.3321/j.issn:0372-2112.2008.05.023
|
2 |
王素玉, 沈兰荪 智能视觉监控技术研究进展[J]. 中国图象图形学报, 2008, 36 (5): 962- 968 WANG Su-yu, SHEN Lan-sun intelligent visual surveillance technology: a survey[J]. Journal of Image and Graphics, 2008, 36 (5): 962- 968
|
3 |
乔传标, 王素玉, 卓力, 等 智能视觉监控中的目标检测与跟踪技术[J]. 测控技术, 2008, 27 (5): 22- 24 QIAO Chuan-biao, WANG Su-yu, ZHUO Li, et al Object detection and tracking for intelligent video surveillance[J]. Measurement and Control Technology, 2008, 27 (5): 22- 24
doi: 10.3969/j.issn.1000-8829.2008.05.007
|
4 |
PAPAGEORGIOU C, POGGIO T A trainable system for object detection[J]. International Journal of Computer Vision, 2000, 38 (1): 15- 33
doi: 10.1023/A:1008162616689
|
5 |
VIOLA P, JONES M J Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57 (2): 137- 154
doi: 10.1023/B:VISI.0000013087.49260.fb
|
6 |
VIOLA P, JONES M J, SNOW D Detecting pedestrians using patterns of motion and appearance[J]. International Journal of Computer Vision, 2005, 63 (2): 153- 161
doi: 10.1007/s11263-005-6644-8
|
7 |
VIOLA P, JONES M J, SNOW D. Detecting pedestrians using patterns of motion and appearance [C] // 9th IEEE International Conference on Computer Vision. Nice: IEEE, 2003: 734-741.
|
8 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C] // Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 886-893.
|
9 |
WANG X Y, HAN T X, YAN S. An HOG-LBP human detector with partial occlusion handling [C] // 2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 32-39.
|
10 |
FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm [C] // International Conference on Machine Learning. Bari: ICML, 1996: 148-156.
|
11 |
GIRSHICK R B. Fast R-CNN [C] // IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
|
12 |
GIRSHICK R B, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C] // IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
13 |
UIJLINGS J R R, VANDESANDE K E A, GEVERS T, et al Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104 (2): 154- 171
doi: 10.1007/s11263-013-0620-5
|
14 |
REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C] // Neural Information Processing Systems. Montreal: NIPS, 2015: 91-99.
|
15 |
LIU W, ANGUELOV D, ERHAN D. SSD: single shot multibox detector [C] // European Conference on Computer Vision. Amsterdam: ECCV, 2016: 21-37.
|
16 |
JOSEPH R, ALI F. YOLO9000: better, faster, stronger [C] // IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
|
17 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C] // IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
|
18 |
SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, Inception-ResNet and the impact of residual connections on learning [C] // Association for the Advancement of Artificial Intelligence. San Francisco: AAAI, 2017: 4278-4284
|
19 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C] // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE 2016: 2818-2826.
|
20 |
AHMED E, JONES M and MARKS T K. An improved deep learning architecture for person re-identification [C] // IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3908-3916.
|
21 |
KONG T, YAO A B, CHEN Y R, et al. HyperNet: towards accurate region proposal generation and joint object detection [C] // IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 845-853.
|
22 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C] // International Conference on Machine Learning. Lille: ICML, 2015: 448-456.
|
23 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C] // IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
|
24 |
ESS A, LEIBE B, VAN GOOL L. Depth and appearance for mobile scene analysis [C] // IEEE International Conference on Computer Vision. Rio de Janeiro: IEEE, 2007: 1-8.
|
25 |
NAM W, DOLLAR P, HAN J H. Local decorrelation for improved pedestrian detection [C] // Neural Information Processing Systems. Montreal: NIPS, 2014: 424-432.
|
26 |
LIM J, ZITNICK C, DOLLAR P. Sketch tokens: a learned mid-level representation for contour and object detection [C] // IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 3158-3165.
|
27 |
BENENSON R, MATHIAS M, TUYTELAARS T. Seeking the strongest rigid detector [C] // IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 3666-3673.
|
28 |
MARIN J, VAZQUEZ D, LOPEZ A, et al. Random forests of local experts for pedestrian detection [C] // IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 2592-2599.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|