Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
带扰流孔波纹板的传热和阻力特性
黄风良1, 孙志坚1, 李鹏程1, 顾金芳2, 胡亚才1
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027;2. 浙江开尔新材料科技股份有限公司,浙江 金华 321031
Heat transfer and resistance characteristics of corrugated plate with spoiler holes
HUANG Feng-liang1, SUN Zhi-jian1, LI Peng-cheng1, GU Jin-fang2, HU Ya-cai1
1. Institute of Thermal Science and Power Systems,Zhejiang University,Hangzhou 310027,China;2. Zhejiang Kaier New Materials Corporation, Jinhua 321031, China
 全文: PDF(1352 KB)   HTML
摘要:

通过数值模拟方法分析DU-1(双皱纹型)波纹板通道内不同Re数下的温度场、速度场以及压力场,提出在DU-1板上开圆形扰流孔以增强传热效果. 针对波纹通道内波纹板和定位板与空气层传热接触面积的不同,拓展了单吹技术数学模型. 考虑扰流孔孔径、间距、位置以及排列方式4种影响因素,利用正交实验法对开扰流孔后DU-1板的传热和阻力特性进行系统研究,分析4种因素的影响规律. 利用综合平衡分析法得出提高DU-1板传热效果和降低流动阻力的最佳水平组合.通过试验验证发现,该带扰流孔DU-1波纹板相对于无扰流孔时传热特性增加19.87%,流动阻力减少24.53%.

Abstract:

The temperature fields, velocity fields and pressure fields in the passage of double corrugated (DU)-1 plate at different Re were simulated through the simulation. The simulation round spoiler holes was proposed to enhance heat transfer of DU-1 plate. The mathematical model of single blow technology (STB) was developed according to the difference of heat transfer area of positioning plate and corrugated plate with air in the passage. Considering diameter, spacing, position and arrangement of the round holes, orthogonal experiments which could considerably increase experiment efficiency were conducted to determine the experimental plate models. The overall mean heat transfer coefficients and friction factors were measured through single blow technology experiments.  The influence of four factors to heat transfer and resistance characteristics of DU-1 with round holes was discussed through the analysis of experimental results. The best combination of the four factors which could enhance heat transfer and reduce flow resistance to the best of DU-1 was raised through consolidated balance analysis. The DU-1 plate has 19.87% increase in heat transfer and 24.53% reduction in flow resistance compared with DU-1 without round holes.

出版日期: 2015-09-10
:  TK 124  
基金资助:

金华市科学技术研究计划重点资助项目(20131031)

通讯作者: 孙志坚,男,副教授     E-mail: sun_zju@126.com
作者简介: 黄风良(1989-),男,硕士生,从事换热器强化传热、空气预热器热力计算等研究. E-mail: huangfl_123@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.07.006.

HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.07.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.07.006        http://www.zjujournals.com/eng/CN/Y2015/V49/I7/1242

[1] 林宗虎, 徐通模. 实用锅炉手册[M]. 北京:化学工业出版社, 2009: 324-341.
[2] 应静良,李永华. 电站锅炉空气预热器[M]. 北京:中国电力出版社, 2002: 53-67.
[3] ZHANG L, CHE D. Influence of corrugation profile on the thermal-hydraulic performance of cross-corrugated plates [J]. Journal of Numerical Heat Transfer, Part A : Applications, 2011, 59(4): 267-296.
[4] FOCKE W W, ZACHARIADES J, OLIVIER I. The effect of the corrugation inclination angle on the thermal-hydraulic performance of plate heat exchangers [J]. International Journal of Heat and Mass Transfer, 1985, 28(8): 1469-1479.
[5] CIOFALO M, STASIEK J, COLLINS M W. Investigation of flow and heat transfer in corrugated passages-II. numerical simulations [J]. International Journal of Heat and Mass Transfer, 1996, 39(1): 165-192.
[6] ZHANG L Z. Turbulent three-dimensional air flow and heat transfer in a cross-corrugated triangular duct [J]. Journal of Heat Transfer, 2005, 127(10):1151-1158.
[7] JAIN S, JOSHI A, BANSAL P K. A new approach to numerical simulation of small sized plate heat exchangers with chevron plates [J]. ASME Journal of Heat Transfer, 2007, 129(3): 291-297.
[8] WANG Q W, ZHANG D J, XIE G N. Experimental study and genetic-algorithm-based correlation on pressure drop and heat transfer performances of a cross-corrugated primary surface heat exchanger [J]. ASME Journal of Heat Transfer, 2009, 131(6): 061802.
[9] 李晓亮. 人字形板式换热器强化传热研究及场协同分析[D]. 济南:山东大学, 2009.
LI Xiao-liang. Chevron plate heat exchanger heat transfer enhancement and field synergy analysis [D]. Jinan: Shandong University, 2009.
[10] 黄莉. 板式换热器波纹参数优化的数值模拟试验研究[D]. 北京:北京化工大学, 2010.
HUANG Li. Numerical simulation of corrugation parameters optimization of plate heat exchanger with experimental method [D]. Beijing: Beijing University of Chemical Technology, 2010.
[11] 李鹏飞, 徐敏仪, 王飞飞. 精通CFD工程仿真与案例实战[M]. 北京:人民邮电出版社, 2011: 113-145.
[12] LOEHRKE R I. Evaluating the results of the single-blow transient heat exchanger test [J]. Journal of Experimental Thermal and Fluid Science, 1990, 3(6): 574-580.
[13] LIANG C Y, YANG W J. Modified single-blow technique for performance evaluation on heat transfer surfaces [J]. ASME Journal of Heat Transfer, 1975, 97(1): 16-21.
[14] SCHUMANN T E W. Heat transfer: a liquid flowing through a porous prism [J]. Journal of the Franklin Institute, 1929, 28(1): 405-416.
[15] PUCCI P F, HOWARD C P, PIERSALL C H. The single-blow transient testing technique for compact heat exchanger surfaces [J]. Journal of Engineering for Gas Turbines and Power-Transactions, 1967, 89(2):29-40.
[16] MULLISEN R S, LOEHRKE R I. A transient heat exchanger evaluation test for arbitrary fluid inlet temperature variation and longitudinal core conduction [J]. ASME Journal of Heat Transfer, 1986, 108(2): 370-376.
[17] ZHANG L, CHE D. An experimental and numerical investigation on the thermal-hydraulic performance of double notched plate [J]. ASME Journal of Heat Transfer, 2012, 134(9): 091802.
[18] SHEER T J, DE KLERK G B, JAWUREK H H, et al. A versatile computer simulation model for rotary regenerative heat exchangers [J]. Journal of Heat Transfer Engineering, 2006, 27(5): 68-79.
[19] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2010: 38-45.
[20] 任露泉. 试验优化设计与分析[M]. 北京:高等教育出版社, 2003: 83-127.

[1] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[2] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[3] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[4] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[5] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[6] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[7] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.
[8] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[9] 李鹏程, 孙志坚, 黄浩, 程攻, 胡亚才. 带扰流孔波纹板蓄热元件的分析[J]. 浙江大学学报(工学版), 2016, 50(2): 306-311.
[10] 段俊杰, 伊国栋, 张树有. 大温差工况下模具发汗水膜冷却机理[J]. 浙江大学学报(工学版), 2015, 49(8): 1478-1486.
[11] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[12] 黄连锋,田付有,厉青,范利武,俞自涛,武海云. 烧结矿立式冷却装置气固传热性能分析[J]. 浙江大学学报(工学版), 2015, 49(5): 916-923.
[13] 黄风良, 孙志坚, 李鹏程, 顾金芳, 胡亚才. 带扰流孔波纹板的传热和阻力特性[J]. 浙江大学学报(工学版), 2015, 49(4): 1-2.
[14] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[15] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.