Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (8): 1613-1619    DOI: 10.3785/j.issn.1008-973X.2020.08.021
土木工程、交通工程     
基于双尺度长短期记忆网络的交通事故量预测模型
李文书(),邹涛涛,王洪雁,黄海
浙江理工大学 机器学习与智能系统团队,浙江 杭州 310018
Traffic accident quantity prediction model based on dual-scale long short-term memory network
Wen-shu LI(),Tao-tao ZOU,Hong-yan WANG,Hai HUANG
Machine Learning and Intelligent Systems Team, Zhejiang University of Science and Technology, Hangzhou 310018, China
 全文: PDF(974 KB)   HTML
摘要:

为了降低交通事故的发生、减少财产损失,建立新型交通事故量预测模型. 该模型利用双尺度分解方程将原始交通事故时间序列分解为多个子层,并利用长短期记忆(LSTM)网络对得到的低频子层进行预测;利用双尺度重构方程将低频子层的预测结果进行重构. 分别构建LSTM预测模型、门控循环单元(GRU)预测模型、自编码(SAEs)预测模型和双尺度长短期记忆网络(DS-LSTM)预测模型,利用这4个预测模型对2个数据集进行预测. 结果表明,本研究模型相较其他模型能够有效预测交通事故时间序列,且具有较强的鲁棒性. 对于2个数据集,相较于原始的LSTM模型,DS_LSTM预测模型预测准确度分别提高6%、28%;对2个不同数据库(利兹和UK)的测试表明本研究模型具有较好的泛化性能.

关键词: 交通事故预测模型长短期记忆网络双尺度分解双尺度重构    
Abstract:

A novel traffic accident prediction model was proposed, in order to reduce the occurrence of traffic accidents and property losses. The dual-scale decomposition equations are utilized to decompose the original traffic accident time series into a number of sub-layers, and the long short-term memory (LSTM) network is adopted to complete the forecasting of the low-frequency sub-layer. The double scale reconstruction equations are adopted to complete the predicted value reconstruction of the low-frequency sub-layer. LSTM, gate recurrent unit (GRU), stacked autoencoders (SAEs) and dual-scale LSTM (DS-LSTM) prediciton models were constructed, and the four models were used to predict the two data sets. Results show that compared with other models, the proposed model is robust and more effective in predicting the traffic accident time series. Compared with the original LSTM model, the prediction accuracy of model DS_LSTM is improved by 6% and 28% respectively in the two data sets. Testing on two different databases (Leeds and UK) shows that the proposed model has better generalization performance than the other models involved.

Key words: traffic accident    prediction model    long short-term memory network    dual-scale decomposition    dual-scale reconstruction
收稿日期: 2019-06-23 出版日期: 2020-08-28
CLC:  TP 181  
基金资助: 国家自然科学基金资助项目(31771224);国家科技部重点研发计划重点专项课题资助项目(2018YFB1004901);浙江省自然科学基金资助项目(LY16F020025,Y17C090031)
作者简介: 李文书(1975—),男,教授,从事图像处理、认知建模研究. orcid.org/0000-0001-8339-8824. E-mail: charlie@zstu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李文书
邹涛涛
王洪雁
黄海

引用本文:

李文书,邹涛涛,王洪雁,黄海. 基于双尺度长短期记忆网络的交通事故量预测模型[J]. 浙江大学学报(工学版), 2020, 54(8): 1613-1619.

Wen-shu LI,Tao-tao ZOU,Hong-yan WANG,Hai HUANG. Traffic accident quantity prediction model based on dual-scale long short-term memory network. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1613-1619.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.021        http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1613

图 1  交通事故预测模型流程图
图 2  LSTM记忆块结构
epochs ACC/%
利兹数据集 UK数据集
400 74.8891 84.8406
500 79.3250 85.2503
600 79.9246 85.9217
700 81.5287 88.1876
800 82.0915 88.0292
900 83.2079 88.0172
1000 82.2952 85.4329
表 1  DS-LSTM模型在不同epochs下的准确度
图 3  epochs为900时的事故量(利兹数据集)
图 4  epochs为700时的事故量(UK数据集)
模型 UK,epochs=700 Leeds,epochs=900
MAE MSE RMSE ACC/% MAE MSE RMSE ACC/%
LSTM 0.5135 0.6161 0.7849 60.8588 0.4288 0.5811 0.7622 76.7608
GRU 0.6531 1.2837 1.1330 50.2231 1.0072 2.2285 1.4928 45.4190
SAEs 0.5872 0.8195 0.9052 55.2421 0.8611 1.4739 1.2140 53.3366
DS-LSTM 0.1900 0.0855 0.2924 88.1876 0.3227 0.2040 0.4517 83.2079
表 2  不同数据集下的模型特性
1 ZIYAB A H, AKHTAR S Incidence and trend of road traffic injuries and related deaths in Kuwait: 2000–2009[J]. Injury, 2012, 43 (12): 2018- 2022
doi: 10.1016/j.injury.2011.09.023
2 YANNIS G, DRAGOMANOVITS A, LAIOU A, et al Road traffic accident prediction modelling: a literature review[J]. Proceedings of the Institution of Civil Engineers, 2017, 170 (5): 245- 254
3 ZHANG J, LIU X M, HE Y L, et al Application of ARIMA model in forecasting traffic accidents[J]. Journal of Beijing University of Technology, 2007, 33 (12): 1295- 1299
4 BARBA L, RODRIGUEZ N, MONTT C Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents[J]. The Scientific World Journal, 2014, 1- 12
5 张艳艳, 刘晓佳, 熊子龙, 等 基于 ARIMA 模型的水上交通事故预测[J]. 中国水运: 下半月, 2017, (2): 51- 54
ZHANG Yan-yan, LIU Xiao-jia, XIONG Zi-long, et al Waterborne traffic accident prediction based on ARIMA model[J]. China Water Transport: the Second Half of the Month, 2017, (2): 51- 54
6 BECKER U, MANZ H Grey systems theory time series prediction applied to road traffic safety in Germany[J]. IFAC-PapersOnLine, 2016, 49 (3): 231- 236
doi: 10.1016/j.ifacol.2016.07.039
7 王星, 刘小勇 基于灰色马尔科夫模型的交通事故预测研究[J]. 交通科技与经济, 2017, 19 (4): 9- 13
WANG Xing, LIU Xiao-yong Study on traffic accident prediction based on grey Markov model[J]. Transportation Science and Technology, 2017, 19 (4): 9- 13
8 邸韡, 巴德瓦杰, 魏佳宁. 深度学习基础教程[M]. 北京: 机械工业出版社, 2018.
9 WANG J, GU Q, WU J, et al. Traffic speed prediction and congestion source exploration: a deep learning method [C]// IEEE 16th International Conference on Data Mining. Barcelona: IEEE, 2016: 499-508.
10 CONTRERAS E, TORRES-TREVINO L, TORRES F. Prediction of car accidents using a maximum sensitivity neural network [C]// 2018 EAI International Conference on Smart Technology. Monterrey: Springer, 2018: 86-95.
11 ZANG D, FANG Y, WANG D, et al. Long term traffic flow prediction using residual net and deconvolutional neural network [C]// Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Guangzhou: Springer, 2018: 62-74.
12 GARCIADE SOTO B, BUMBACHER A, DEUBLEIN M, et al Predicting road traffic accidents using artificial neural network models[J]. Infrastructure Asset Management, 2018, 5 (4): 132- 144
doi: 10.1680/jinam.17.00028
13 ZHANG C, ZHANG H, YUAN D, et al Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (8): 1656- 1659
doi: 10.1109/LCOMM.2018.2841832
14 PAMULA T Impact of data loss for prediction of traffic flow on an urban road using neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20 (3): 1000- 1009
15 陈海龙, 彭伟 改进 BP 神经网络在交通事故预测中的研究[J]. 华东师范大学学报: 自然科学版, 2017, 2: 61- 68
CHEN Hai-long, PENG Wei Study on improved BP neural network in traffic accident prediction[J]. Journal of East China Normal University: Natural Science, 2017, 2: 61- 68
16 ZHAO Z, CHEN W, WU X, et al LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11 (2): 68- 75
doi: 10.1049/iet-its.2016.0208
17 CORTEZ B, CARRERA B, KIM Y J, et al An architecture for emergency event prediction using LSTM recurrent neural networks[J]. Expert Systems with Applications, 2018, 97: 315- 324
doi: 10.1016/j.eswa.2017.12.037
18 ALKHEDER S, TAAMNEH M, TAAMNEH S Severity prediction of traffic accident using an artificial neural network[J]. Journal of Forecasting, 2017, 36 (1): 100- 108
doi: 10.1002/for.2425
19 BEYLKIN G, COIFMAN R, ROKHLIN V Fast wavelet transforms and numerical algorithms I[J]. Communications on Pure and Applied Mathematics, 1991, 44 (2): 141- 183
doi: 10.1002/cpa.3160440202
20 MALLAT S G A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, (7): 674- 693
21 彭玉华. 小波变换与工程应用[M]. 北京: 科学出版社, 1999.
22 SHI X J, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting [C]// Advances in Neural Information Processing Systems. 2015: 802-810.
23 RAHMANI B Early model of traffic sign reminder based on neural network[J]. Telkomnika, 2012, 10 (4): 749
doi: 10.12928/telkomnika.v10i4.864
24 CHAI T, DRAXLER R R Root mean square error (RMSE) or mean absolute error (MAE)? : arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7 (3): 1247- 1250
doi: 10.5194/gmd-7-1247-2014
25 FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction [C]// 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Wuhan: IEEE, 2016: 324-328.
26 ZHANG D, KABUKA M R Combining weather condition data to predict traffic flow: a GRU-based deep learning approach[J]. IET Intelligent Transport Systems, 2018, 12 (7): 578- 585
doi: 10.1049/iet-its.2017.0313
[1] 周金海,王依川,佟京鲆,周世镒,吴翔飞. 基于慢时间分割的超宽带雷达步态识别[J]. 浙江大学学报(工学版), 2020, 54(2): 283-290.
[2] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[3] 丰明坤,施祥. 视觉特征深度融合的图像质量评价[J]. 浙江大学学报(工学版), 2019, 53(3): 512-521.
[4] 朱剑锋,庹秋水,邓温妮,饶春义,刘浩旭. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2168-2174.
[5] 胡天中,余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10): 1852-1864.
[6] 王亮, 於志文, 郭斌. 基于双层多粒度知识发现的移动轨迹预测模型[J]. 浙江大学学报(工学版), 2017, 51(4): 669-674.
[7] 季学斌, 王慧, 宋春跃. 基于元胞自动机的施工场内交通流建模及安全分析[J]. 浙江大学学报(工学版), 2017, 51(10): 2005-2011.
[8] 黄克, 周奇才, 赵炯, 熊肖磊. 盾构液压系统状态预测[J]. J4, 2013, 47(8): 1437-1443.
[9] 胡星星,裘乐淼,张树有,张辉.  基于混合响应面法的滚压成型回弹角预测控制及应用[J]. J4, 2013, 47(11): 2010-2019.
[10] 肖冬峰,杨春节,宋执环. 基于改进BP网络的高炉煤气发生量预测模型[J]. J4, 2012, 46(11): 2103-2108.
[11] 张志刚, 周晓军, 李永军, 沈路, 杨富春. 湿式多片换档离合器带排转矩的预测模型[J]. J4, 2011, 45(4): 708-713.
[12] 商秀芹, 卢建刚, 孙优贤. 基于遗传规划的铁矿烧结终点2级预测模型[J]. J4, 2010, 44(7): 1266-1269.
[13] 徐日庆 郭印 刘增永. 人工制备有机质固化土力学特性试验研究[J]. J4, 2007, 41(1): 109-113.