Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2168-2174    DOI: 10.3785/j.issn.1008-973X.2019.11.015
土木工程、市政工程     
镁质水泥复合固化剂固化有机质土的抗压强度模型
朱剑锋1,2(),庹秋水1,3,邓温妮4,饶春义1,刘浩旭1
1. 宁波大学 建筑工程与环境学院,浙江 宁波 315211
2. 浙江科技学院 土木与建筑工程学院,浙江 杭州 310023
3. 浙江交工集团股份有限公司 大桥分公司,浙江 杭州 310051
4. 东南大学 土木工程学院,江苏 南京 211189
Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent
Jian-feng ZHU1,2(),Qiu-shui TUO1,3,Wen-ni DENG4,Chun-yi RAO1,Hao-xu LIU1
1. Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
2. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023,China
3. Bridge Branch Zhejiang Provincial Transportation Engineering Construction Group Co. Ltd, Hangzhou 310051, China
4. School of Civil Engineering, Southeast University, Nanjing 211189, China
 全文: PDF(1143 KB)   HTML
摘要:

为了给实际工程中镁质水泥复合固化剂对有机质土的加固效果提供评价依据,以镁质水泥固化土(TZ18固化土)的无侧限抗压强度作为评价指标,分别研究有机质、水、固化剂的质量分数以及龄期对无侧限抗压强度的影响规律. 结果表明:TZ18固化土的无侧限抗压强度随有机质质量分数的增加呈二次函数形式降低,随水和固化剂质量分数的增加分别呈幂函数形式降低和提高,随龄期的增加呈自然对数形式增长. 基于此规律,建立TZ18固化土的抗压强度预测模型. 算例分析表明,该模型能较好地预测任意有机质、水、固化剂的质量分数以及龄期下的TZ18固化土的无侧限抗压强度.

关键词: 镁质水泥固化剂有机质水的质量分数龄期无侧限抗压强度预测模型    
Abstract:

In order to provide evaluation basis for the solidification effect of cured organic soil solidified by the magnesium cement complex curing agent in practical engineering, the unconfined compressive strength of the magnesium-cement cured soil (TZ18 cured soil) was taken as the evaluation index, and the influences of the mass fraction of organic matter, water and curing agent and the age on the unconfined compressive strength were investigated. Results showed that the unconfined compressive strength of the TZ18 cured soil decreased in quadratic function with the increase of organic matter mass fraction and reduced in power function with the increase of water mass fraction, whereas increased in power function with the increase of cured agent mass fraction and enhanced in natural logarithm function with the growth of age. Based on the above tested results, a forecast model of the comprehensive compressive strength of TZ18 cured organic soil was developed. Example analysis indicated that the proposed model can predict the unconfined compressive strength of TZ18 cured soil at any mass fraction of organic matter, water and curing agent as well as age.

Key words: magnesium cement curing agent    organic matter    mass fraction of water    age    unconfined compressive strength    forecast model
收稿日期: 2018-09-16 出版日期: 2019-11-21
CLC:  TU 411  
基金资助: 国家自然科学基金资助项目(51879133,51508092,51409142);浙江省自然科学基金资助项目(LY17E080006);江苏省自然科学基金资助项目(BK20150611);宁波市自然科学基金资助项目(2017A610307)
作者简介: 朱剑锋(1982—),男,副教授,从事软土加固机理及本构关系研究. orcid.org/0000-0001-5784-6187. E-mail: zhujianfeng0811@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
朱剑锋
庹秋水
邓温妮
饶春义
刘浩旭

引用本文:

朱剑锋,庹秋水,邓温妮,饶春义,刘浩旭. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2168-2174.

Jian-feng ZHU,Qiu-shui TUO,Wen-ni DENG,Chun-yi RAO,Hao-xu LIU. Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2168-2174.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.015        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2168

图 1  试验用土实物图
土样名称 wW/% γ/(kN·m–3 e wp/% wL/% Es1-2/MPa φ/(°) c/kPa
淤泥质黏土 43.6 17.6 1.16 21.4 35.8 1.84 3.84 4.37
表 1  土样的物理力学指标
材料名称 分子/结构式 规格 生产厂家
1)注:AR为分析纯试剂(analytical reagent)
腐殖酸 ? 农业级 江西萍乡红土地
七水硫酸镁 MgSO4·7H2O 农业级 广州林国化肥
轻烧氧化镁 MgO 工业级 辽宁海城菱镁矿
柠檬酸 C6H8O7 AR1) 上海国药集团
水玻璃 NaSiO3 AR 天津鼎盛鑫化工
熟料 ? 工业级 发电厂
硅灰 ? 工业级 发电厂
表 2  无侧限抗压强度试验原材料
图 2  人工有机质土与TZ18固化土的制备
组别 影响因素 各因素配比方案 T
M-0 基准配比 wC=15%;wO=6%;wW=60% 7 d
M-1 wC 12%、15%、18%、20% 7 d
M-2 wO 0%、3%、6%、9% 7 d
M-3 wW 50%、60%、70%、80% 7 d
M-4 T 7 d、14 d、28 d、60 d ?
表 3  TZ18固化土的无侧限抗压强度试验方案
图 3  TZ18固化土7 d无侧限抗压强度随腐殖酸质量分数的变化规律
图 4  TZ18固化土7 d无侧限抗压强度随水的质量分数的变化规律
图 5  TZ18固化土7 d无侧限抗压强度随固化剂质量分数的变化规律
图 6  TZ18固化土无侧限抗压强度随龄期的变化规律
图 7  归一化后的TZ18固化土7 d无侧限抗压强度与总灰水比的关系
图 8  参数A0与归一化腐殖酸质量分数的关系
图 9  归一化后的TZ18固化土无侧限抗压强度与龄期的关系
层号 土层名称 wW/% γ/(kN·m–3 e wp/% wL/% Es1-2/MPa φ/(°) c/kPa wO/%
3 淤泥质土 68.4 17.2 1.332 27.0 45.1 2.2 10.0 14.0 6.90
1a 淤泥质土 56.9 17.5 1.143 21.8 36.3 2.7 10.5 14.0 5.47
1 淤泥质土 41.1 17.9 1.003 20.5 32.7 2.8 11.5 17.0 3.97
表 4  试验土样的工程指标
组别 试验用土所在层号 实测值/kPa 理论值/kPa 相对误差/%
E-1 3 706.2 736.87 4.34
E-2 1a 950.9 971.75 2.19
E-3 1 1 563.2 1 522.37 –2.60
表 5  实测TZ18固化土7 d无侧限抗压强度与理论值的对比
1 丁建文, 张帅, 洪振舜, 等 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31 (9): 2817- 2822
DING Jian-wen, ZHANG Shuai, HONG Zhen-shun, et al Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously[J]. Rock and Soil Mechanics, 2010, 31 (9): 2817- 2822
doi: 10.3969/j.issn.1000-7598.2010.09.021
2 徐日庆, 郭印, 刘增永 人工制备有机质固化土力学特性试验研究[J]. 浙江大学学报: 工学版, 2007, 41 (1): 109- 113
XU Ri-qing, GUO Yin, LIU Zeng-yong Experimental study on mechanical properties of stabilized artificial organic soil[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (1): 109- 113
3 庹秋水, 朱剑锋, 饶春义 固化有机质土的抗剪强度试验研究[J]. 泥沙研究, 2017, 42 (5): 70- 74
TUO Qiu-shui, ZHU Jian-feng, RAO Chun-yi Experimental study on shear strength of stabilized organic soil[J]. Journal of Sediment Research, 2017, 42 (5): 70- 74
4 TREMBLAY H, DUCHESNE J, LOCAT J, et al Influence of the nature of organic compounds on fine soil stabilization with cement[J]. Canadian Geotechnical Journal, 2002, 39 (3): 535- 546
doi: 10.1139/t02-002
5 郭印, 徐日庆, 邵允铖 淤泥质土的固化机理研究[J]. 浙江大学学报: 工学版, 2008, 42 (6): 1071- 1075
GUO Yin, XU Ri-qing, SHAO Yun-cheng Study on mechanism of muddy soil stabilization[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (6): 1071- 1075
6 朱伟, 曾科林, 张春雷 淤泥固化处理中有机物成分的影响[J]. 岩土力学, 2008, 29 (1): 33- 36
ZHU Wei, ZENG Ke-lin, ZHANG Chun-lei Influence of organic matter component on solidification of dredged sediment[J]. Rock and Soil Mechanics, 2008, 29 (1): 33- 36
doi: 10.3969/j.issn.1000-7598.2008.01.007
7 HARVEY O R, HARRIS J P, HERBERT B E Natural organic matter and the formation of calcium-silicate-hydrates in lime-stabilized smectites: a thermal analysis study[J]. Thermochimica Acta, 2010, 505 (1/2): 106- 113
8 程福周, 雷学文, 孟庆山, 等 水泥-水玻璃固化东湖淤泥的室内试验研究[J]. 人民长江, 2013, 44 (24): 45- 48
CHENG Fu-zhou, LEI Xue-wen, MENG Qing-shan, et al Indoor experiment study on solidification of lake silt by cement-sodium silicate[J]. Yangtze River, 2013, 44 (24): 45- 48
doi: 10.3969/j.issn.1001-4179.2013.24.013
9 简文彬, 张登, 黄春香 水泥-水玻璃固化软土的微观机理研究[J]. 岩土工程学报, 2013, 35 (增2): 632- 637
JIAN Wen-bin, ZHANG Deng, HUANG Chun-xiang Micromechanism of cement-sodium silicate- stabilized soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (增2): 632- 637
10 李兆恒. MgO-SiO2-H2O胶凝体系的反应机制及应用研究[D]. 广州: 华南理工大学, 2015.
LI Zhao-heng. Reaction mechanisms and application study of MgO-SiO2-H2O cementitious system [D]. Guangzhou: South China University of Technology, 2015.
11 钱春香, 王安辉, 王欣 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36 (6): 1538- 1548
QIAN Chun-xiang, WANG An-hui, WANG Xin Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36 (6): 1538- 1548
12 庹秋水. 镁质水泥复合固化剂加固淤泥质土的试验研究[D]. 宁波: 宁波大学, 2018.
TUO Qiu-shui. Experimental study on curing muddy soil with magnesium cement composite curing agent [D]. Ningbo: Ningbo University, 2018.
13 汤怡新, 刘汉龙, 朱伟 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22 (5): 549- 554
TANG Yi-xin, LIU Han-long, ZHU Wei Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22 (5): 549- 554
doi: 10.3321/j.issn:1000-4548.2000.05.008
14 LEE F H, LEE Y, CHEW S H, et al Strength and modulus of marine clay-cement mixes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (2): 178- 186
doi: 10.1061/(ASCE)1090-0241(2005)131:2(178)
15 刘汉龙, 董金梅, 周云东, 等 聚苯乙烯轻质混合土物理力学特性的影响因素[J]. 岩土力学, 2005, 26 (3): 445- 449
LIU Han-long, DONG Jin-mei, ZHOU Yun-dong, et al Factors influencing on physico-mechanical properties of the light soil mixed polystyrene[J]. Rock and Soil Mechanics, 2005, 26 (3): 445- 449
doi: 10.3969/j.issn.1000-7598.2005.03.022
16 储诚富, 洪振舜, 刘松玉, 等 用似水灰比对水泥土无侧限抗压强度的预测[J]. 岩土力学, 2005, 26 (4): 645- 649
CHU Cheng-fu, HONG Zhen-shun, LIU Song-yu, et al Prediction of unconfined compressive strength of cemented soils with quasi-water-cement ratio[J]. Rock and Soil Mechanics, 2005, 26 (4): 645- 649
doi: 10.3969/j.issn.1000-7598.2005.04.030
17 张铁军, 洪振舜, 邓东升, 等 水泥固化粉质土的无侧限抗压强度预测[J]. 东南大学学报: 自然科学版, 2008, 38 (5): 839- 843
ZHANG Tie-jun, HONG Zhen-shun, DENG Dong-sheng, et al Predication method of unconfined compression strength for cemented silty soils[J]. Journal of Southeast University: Natural Science Edition, 2008, 38 (5): 839- 843
18 徐日庆, 李俊虎, 蔡承晟, 等 用固化剂GX08加固杭州海湖相软土的强度特性研究[J]. 岩土力学, 2014, 35 (6): 1528- 1533
XU Ri-qing, LI Jun-hu, CAI Cheng-sheng, et al Study of strength characteristics of stabilized soil by using stabilizing agent GX08 treating marine and lacustrine soft soil in Hangzhou[J]. Rock and Soil Mechanics, 2014, 35 (6): 1528- 1533
19 蔡光华. 活性氧化镁碳化加固软弱土的试验与应用研究[D]. 南京: 东南大学, 2017.
CAI Guang-hua. Experimental and application studies on soft soil carbonated and stabilized by reactive magnesia [D]. Nanjing: Southeast University, 2017.
[1] 李文书,邹涛涛,王洪雁,黄海. 基于双尺度长短期记忆网络的交通事故量预测模型[J]. 浙江大学学报(工学版), 2020, 54(8): 1613-1619.
[2] 孟祥传,周家作,韦昌富,陈盼,张坤,沈正艳. 基于广义Clapeyron方程的含盐土冻结特征曲线模型[J]. 浙江大学学报(工学版), 2020, 54(12): 2377-2385.
[3] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017.
[4] 丰明坤,施祥. 视觉特征深度融合的图像质量评价[J]. 浙江大学学报(工学版), 2019, 53(3): 512-521.
[5] 卢春鹏,刘杏红,赵志方,马刚,金瑞鑫,常晓林. 热膨胀系数时变性对混凝土温度应力仿真影响[J]. 浙江大学学报(工学版), 2019, 53(2): 284-291.
[6] 胡倩筠, 常晓林, 冯楚桥, 周伟, 马刚. 基于性能演变理论的混凝土细观损伤特性研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1596-1604.
[7] 王亮, 於志文, 郭斌. 基于双层多粒度知识发现的移动轨迹预测模型[J]. 浙江大学学报(工学版), 2017, 51(4): 669-674.
[8] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[9] 黄克, 周奇才, 赵炯, 熊肖磊. 盾构液压系统状态预测[J]. J4, 2013, 47(8): 1437-1443.
[10] 柯瀚,王文芳,魏长春,陈云敏,詹良通. 填埋体饱和渗透系数影响因素室内研究[J]. J4, 2013, 47(7): 1164-1170.
[11] 胡星星,裘乐淼,张树有,张辉.  基于混合响应面法的滚压成型回弹角预测控制及应用[J]. J4, 2013, 47(11): 2010-2019.
[12] 肖冬峰,杨春节,宋执环. 基于改进BP网络的高炉煤气发生量预测模型[J]. J4, 2012, 46(11): 2103-2108.
[13] 张志刚, 周晓军, 李永军, 沈路, 杨富春. 湿式多片换档离合器带排转矩的预测模型[J]. J4, 2011, 45(4): 708-713.
[14] 商秀芹, 卢建刚, 孙优贤. 基于遗传规划的铁矿烧结终点2级预测模型[J]. J4, 2010, 44(7): 1266-1269.
[15] 桂跃, 高玉峰, 张庆, 陈国栋, 李振山. 疏浚淤泥生石灰-磷石膏材料化处理效果[J]. J4, 2010, 44(10): 1974-1978.