电气工程 |
|
|
|
|
基于智能家电的短期电力负荷预测与削峰填谷优化 |
王晨霖1( ),杨洁1,居文军2,顾复1,陈芨熙1,*( ),纪杨建1 |
1. 浙江大学 机械工程学院,浙江 杭州 310058 2. 青岛海尔科技有限公司,山东 青岛 266100 |
|
Short term load forecasting and peak shaving optimization based on intelligent home appliance |
Chen-lin WANG1( ),Jie YANG1,Wen-jun JU2,Fu GU1,Ji-xi CHEN1,*( ),Yang-jian JI1 |
1. College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China 2. Qingdao Haier Technology Limited Company, Qingdao 266100, China |
引用本文:
王晨霖,杨洁,居文军,顾复,陈芨熙,纪杨建. 基于智能家电的短期电力负荷预测与削峰填谷优化[J]. 浙江大学学报(工学版), 2020, 54(7): 1418-1424.
Chen-lin WANG,Jie YANG,Wen-jun JU,Fu GU,Ji-xi CHEN,Yang-jian JI. Short term load forecasting and peak shaving optimization based on intelligent home appliance. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1418-1424.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.021
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1418
|
1 |
王志勇, 曹一家 层次匹配范例推理在短期负荷预测中的应用[J]. 浙江大学学报: 工学版, 2007, 41 (9): 1598- 1603 WANG Zhi-yong, CAO Yi-jia Case-based reasoning for short-term load forecasting based on hierarchy matching[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (9): 1598- 1603
|
2 |
YU Yun-luo, LI Wei, SHENG De-ren, et al A hybrid short-term load forecasting method based on improved ensemble empirical mode decomposition and back propagation neural network[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2016, 17 (2): 101- 114
|
3 |
陆海, 罗凤章, 杨欣, 等 基于数据驱动理念的电力日负荷曲线预测方法研究[J]. 电力系统及其自动化学报, 2020, 32 (1): 42- 49 LU Hai, LUO Feng-zhang, YANG Xin, et al Study on daily power load curve forecasting method based on data-driven concept[J]. Proceedings of the CSU-EPSA, 2020, 32 (1): 42- 49
|
4 |
徐晴, 周超, 赵双双, 等. 基于机器学习的短期电力负荷预测方法研究[J]. 电测与仪表, 2019, 56(23): 70-75. XU Qing, ZHOU Chao, ZHAO Shuang-shuang, et al. Research on short-term power load forecasting method based on machine learning [J]. Electrical Measurement and Instrumentation, 2019, 56(23): 70-75.
|
5 |
翟毅, 徐丽燕, 季学纯, 等 基于长短期记忆神经网络的短期负荷预测[J]. 信息技术, 2019, 35 (10): 27- 31 ZHAI Yi, XU Li-yan, JI Xue-chun, et al Short-term power load forecasting based on long-term memory neural network[J]. Information Technology, 2019, 35 (10): 27- 31
|
6 |
ZHANG Ning, LI Zhi-ying, ZOU Xun, et al. Quiring. Comparison of three short-term load forecast models in Southern California [J]. Energy, 2019, 189: 116358.
|
7 |
TRATAR L F, STRMCNIK E The comparison of Holt–Winters method and multiple regression method: a case study[J]. Energy, 2016, 109: 266- 276
doi: 10.1016/j.energy.2016.04.115
|
8 |
BUYUKSAHIN ü C, ERTEKIN S Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition[J]. Neurocomputing, 2019, 361: 151- 163
doi: 10.1016/j.neucom.2019.05.099
|
9 |
HAO X, WANG Z, SHAN Z, et al Prediction of electricity consumption in cement production: a time-varying delay deep belief network prediction method[J]. Neural Computing and Applications, 2019, 31: 7165- 7179
doi: 10.1007/s00521-018-3540-z
|
10 |
张利, 李富强, 汪树玉, 等 观测分析中的回归-时序列模型[J]. 浙江大学学报: 工学版, 2002, 36 (5): 102- 106 ZHANG Li, LI Fu-qiang, WANG Shu-yu, et al Regression time-series model for analyzing observational data[J]. Journal of Zhejiang University: Engineering Science, 2002, 36 (5): 102- 106
|
11 |
MAKKHAN S J S, PARMAR K S, KAUSHAL S, et al Correlation and time-series analysis of black carbon in the coal mine regions of India: a case study[J]. Modeling Earth Systems and Environment, 2020, 6: 659- 669
doi: 10.1007/s40808-020-00719-8
|
12 |
PUAH Y J, HUANG Y F, CHUA K C, et al River catchment rainfall series analysis using additive Holt–Winters method[J]. Journal of Earth System Science, 2016, 125: 269- 283
doi: 10.1007/s12040-016-0661-6
|
13 |
TAYLOR S J, LETHAM B. Forecasting at scale [EB/OL]. 2017-09-27. https://doi.org/10.7287/peerj.preprints.3190v2.
|
14 |
徐晶, 迟福建, 葛磊蛟, 等 基于SARIMA-GRNN-SVM的短期商业电力负荷组合预测方法[J]. 电力系统及其自动化学报, 2020, 32 (2): 85- 91 XU Jing, CHI Fu-jian, GE Lei-jiao, et al Short-term combined commercial load forecasting method based on SARIMA-GRNN-SVM[J]. Proceedings of the CSU-EPSA, 2020, 32 (2): 85- 91
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|