计算机技术、信息工程 |
|
|
|
|
基于慢时间分割的超宽带雷达步态识别 |
周金海1( ),王依川1,佟京鲆1,周世镒1,吴翔飞2 |
1. 浙江大学 信息与电子工程学院,浙江 杭州 310027 2. 杭州迈臻智能科技有限公司,浙江 杭州 310000 |
|
Ultra wide band radar gait recognition based on slow-time segmentation |
Jin-hai ZHOU1( ),Yi-chuan WANG1,Jing-ping TONG1,Shi-yi ZHOU1,Xiang-fei WU2 |
1. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China 2. Hangzhou Magnet Intelligent Technology Co. Ltd, Hangzhou 310000, China |
引用本文:
周金海,王依川,佟京鲆,周世镒,吴翔飞. 基于慢时间分割的超宽带雷达步态识别[J]. 浙江大学学报(工学版), 2020, 54(2): 283-290.
Jin-hai ZHOU,Yi-chuan WANG,Jing-ping TONG,Shi-yi ZHOU,Xiang-fei WU. Ultra wide band radar gait recognition based on slow-time segmentation. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 283-290.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.009
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I2/283
|
1 |
WANG X Intelligent multi-camera video surveillance: a review[J]. Pattern Recognition Letters, 2013, 34 (1): 3- 19
doi: 10.1016/j.patrec.2012.07.005
|
2 |
YANG C C, HSU Y L A review of accelerometry-base-dwearable motion detectors for physical activity mon-itoring[J]. Sensors, 2010, 10 (8): 7772- 7788
doi: 10.3390/s100807772
|
3 |
AMIN M G, ZHANG Y D, AHMAD F, et al Radar signal processing for elderly fall detection: the future for in-home monitoring[J]. IEEE Signal Processing Magazine, 2016, 33 (2): 71- 80
doi: 10.1109/MSP.2015.2502784
|
4 |
AMIN M G. Radar for indoor monitoring: detection, classification, and assessment [M]. Boca Raton: CRC Press, 2017.
|
5 |
CHEN V C, LI F, HO S S, et al Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21
|
6 |
PARASHAR K N, OVENEKE M C, RYKUNOV M, et al. Micro-Doppler feature extraction using convolutional auto-encoders for low latency target classification [C]// 2017 IEEE Radar Conference. Seattle: IEEE, 2017: 1739-1744.
|
7 |
KIM Y, LING H Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47 (5): 1328- 1337
doi: 10.1109/TGRS.2009.2012849
|
8 |
JOKANOVIC B, AMIN M Fall detection using deep learning in range-Doppler radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 54 (1): 180- 189
|
9 |
SSYFIOGLU M S, OZBAYOGLU A M, GURBUZ S Z Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (4): 1709- 1723
doi: 10.1109/TAES.2018.2799758
|
10 |
MURO A, GARCIA B, MENDEZ A Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications[J]. Sensors, 2014, 14 (2): 3362- 3394
doi: 10.3390/s140203362
|
11 |
SAHO K, FUJIMOTO M, MASUGI M, et al Gait classification of young adults, elderly non-fallers, and elderly fallers using micro-doppler radar signals: simulation study[J]. IEEE Sensors Journal, 2017, 17 (8): 2320- 2321
doi: 10.1109/JSEN.2017.2678484
|
12 |
TIVIVE F H C, BOUZERDOUM A, AMIN M G A humangait classification method based on radar Doppler spectrograms[J]. EURASIP Journal on Advances in Signal Processing, 2010, 389716
|
13 |
SEIFERT A K, AMIN M, ZOUBIR A M Toward unobtrusive in-home gait analysis based on radar micro-doppler signatures[J]. IEEE Transactions on Biomedical Engineering, 2019, 66 (9): 2629- 2640
|
14 |
BARREET T W History of ultra wideband commun-ications and radar[J]. Microwave Journal, 2001, 44 (2): 22- 46
|
15 |
费元春. 超宽带雷达理论与技术[M]. 北京: 国防工业出版社, 2010.
|
16 |
张群, 胡健, 罗迎, 等 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7 (5): 5- 21 ZHANG Qun, HU Jian, LUO Ying, et al Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7 (5): 5- 21
|
17 |
TSAO J, PORRAT D, TSE D Prediction and modeling for the time-evolving ultra-wide band channel[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (3): 340- 356
doi: 10.1109/JSTSP.2007.906662
|
18 |
COHEN L. Time-frequency analysis: theory and applications [M]. Upper Saddle River: Prentice Hall, 1995.
|
19 |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social lstm: human trajectory prediction in crowded spaces [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 961-971.
|
20 |
VENUGOPALAN S, HENDRICKS L A, MOONEY R, et al. Improving lstm-based video description with linguistic knowledge mined from text [J/OL]. [2016-11-29]. (2019-06-25). https://arxiv.org/abs/1604.01729.
|
21 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// International Conference on Computer Vision and Pattern Recognition. San Diego: IEEE Computer Society, 2005: 886-893.
|
22 |
SHIN H C, ROTH H R, GAO M, et al Deep conv-olutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35 (5): 1285- 1298
doi: 10.1109/TMI.2016.2528162
|
23 |
陈羽中, 方明月, 郭文忠, 等 基于小波变换与差分自回归移动平均模型的微博话题热度预测[J]. 模式识别与人工智能, 2015, 28 (7): 586- 594 CHEN Yu-zhong, FANG Ming-yue, GUO wen-zhong, et al Topic popularity prediction of microblog based on wavelet transformation and ARIMA[J]. Pattern Recognition and Artificial Intelligence, 2015, 28 (7): 586- 594
|
24 |
NARASIMHAN V, DANECEK P, SCALLY A, et al BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data[J]. Bioinformatics, 2016, 32 (11): 1749- 1751
doi: 10.1093/bioinformatics/btw044
|
25 |
CHEN K, ZHOU Y, DAI F. A LSTM-based method for stock returns prediction: a case study of China stock market [C]// 2015 IEEE International Conference on Big Data. Santa Clara: IEEE, 2015: 2823-2824.
|
26 |
NGUYEN A, KANOULAS D, MURATORE L, et al. Translating videos to commands for robotic manipulation with deep recurrent neural networks [C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2018: 1-9.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|