机械工程 |
|
|
|
|
预应变亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能 |
王一博1,2( ),丁会明3,4,*( ),郑津洋1,2,4,陆群杰1,2,王振宇1,2,徐平5,陈志伟6 |
1. 浙江大学 化工机械研究所,浙江 杭州 310027 2. 浙江大学 高压过程装备与安全教育部工程研究中心,浙江 杭州 310027 3. 浙江大学 机械工程学院,浙江 杭州 310027 4. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 5. 浙江大学 航空航天学院,浙江 杭州 310027 6. 中国特种设备检测研究院,北京 100029 |
|
Cryogenic low-cycle fatigue performance of pre-strained metastable austenitic stainless steel (S30408) |
Yi-bo WANG1,2( ),Hui-ming DING3,4,*( ),Jin-yang ZHENG1,2,4,Qun-jie LU1,2,Zhen-yu WANG1,2,Ping XU5,Zhi-wei CHEN6 |
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China 2. High-pressure Process Equipment and Safety Engineering Research Center of Ministry of Education, Zhejiang University, Hangzhou 310027, China 3. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China 5. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China 6. China Special Equipment Inspection and Research Institute, Beijing 100029, China |
引用本文:
王一博,丁会明,郑津洋,陆群杰,王振宇,徐平,陈志伟. 预应变亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(11): 2190-2195.
Yi-bo WANG,Hui-ming DING,Jin-yang ZHENG,Qun-jie LU,Zhen-yu WANG,Ping XU,Zhi-wei CHEN. Cryogenic low-cycle fatigue performance of pre-strained metastable austenitic stainless steel (S30408). Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2190-2195.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.014
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2190
|
1 |
ZHENG J, MIAO C, LI Y, et al Investigation on influence factors of mechanical properties of austenitic stainless steels for cold stretched pressure vessels[J]. Journal of Pressure Vessel Technology: Transactions of the ASME, 2012, 134 (6): 061407
|
2 |
JIN L, CHO H, LEE C, et al Experimental research and numerical simulation on cryogenic line chill-down process[J]. Cryogenics, 2018, (89): 42- 52
|
3 |
DING H, WU Y, LU Q, et al Tensile properties and impact toughness of S30408 stainless steel and its welded joints at cryogenic temperatures[J]. Cryogenics, 2018, (92): 50- 59
|
4 |
OH D, LEE J, NOH B, et al Investigation of fatigue performance of low temperature alloys for liquefied natural gas storage tanks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229 (7): 1300- 1314
|
5 |
樊雪珺, 惠虎, 黄淞 应变强化型移动式深冷压力容器在控制形变情况下的应力分析[J]. 压力容器, 2019, 36 (8): 16- 22 FAN Xue-jun, HUI Hu, HUANG Song Stress analysis of strain-strengthened transportable cryogenic pressure vessels with deformation controlled[J]. Pressure Vessel Technology, 2019, 36 (8): 16- 22
|
6 |
张潇. 亚稳态奥氏体不锈钢标准椭圆形封头温冲压温度研究[D]. 杭州: 浙江大学, 2015: 4-6. ZHANG Xiao. Research on temperature of warm stamping formed standard elliptical head made of metastable austenitic stainless steel [D]. Hangzhou: Zhejiang University, 2015: 4-6.
|
7 |
AKITA M, NAKAJIMA M, TOKAJI K, et al. Fatigue behaviour of pre-strained type 316 stainless steel [C]// Fracture of Nano and Engineering Materials and Structures. Dordrecht: Springer, 2006: 229-230.
|
8 |
姜公锋, 孙亮, 陈钢 304不锈钢应变强化疲劳寿命的试验研究[J]. 机械强度, 2014, 36 (6): 850- 855 JIANG Gong-feng, SUN Liang, CHEN Gang Experimental study of 304 stainless steel fatigue life considering material pre-strain hardening effect[J]. Journal of Mechanical Strength, 2014, 36 (6): 850- 855
|
9 |
彭开萍, 陈文哲, 钱匡武 动态应变时效对18—8型奥氏体不锈钢低周疲劳行为的影响[J]. 金属学报, 1993, 29 (6): 43- 48 PENG Kai-ping, CHEN Wen-zhe, QIAN Kuang-wu Effect of dynamic strain aging on low cycle fatigue behavior of 18-8 austenitic stainless steel[J]. Acta Metallurgica Sinica, 1993, 29 (6): 43- 48
|
10 |
YURI T, OGATA T, SAITO M, et al Effect of welding structure and delta-ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures[J]. Cryogenics, 2000, 40 (4/5): 251- 259
|
11 |
MCRAE D M, BALACHANDRAN S, WALSH R P. Fatigue and fracture of three austenitic stainless steels at cryogenic temperatures [J]. IOP Conference Series: Materials Science and Engineering. 2017, 279(1):12001.
|
12 |
BOTSHEKAN M, DEGALLAIX S, DESPLANQUES Y, et al. Tensile and LCF properties of AISI 316LN SS at 300 K and 77 K [J]. Fatigue and Fracture of Engineering Materials & Structures, 1998, 21(6): 651-660.
|
13 |
WU Y, XU H, LU Q, et al. Low-cycled fatigue life of S30408 stainless steel at liquid-nitrogen temperature [C]// ASME 2018 Pressue Vessels and Piping Conference. Pragure: ASME, 2018.
|
14 |
承压设备用不锈钢板及钢带: GB/T 24511—2017[S]. 北京: 中国标准出版社, 2018.
|
15 |
LU Q, ZHENG J, ZHANG X. Research on forming temperature of metastable austenitic stainless steel head based on stain-induced martensitic transformation [C]// ASME 2016 Pressure Vessels and Piping Conference. Vancouver: ASME, 2016.
|
16 |
金属材料 低温拉伸试验方法: GB/T 13239—2006[S]. 北京: 中国标准出版社, 2007.
|
17 |
金属材料轴向等幅低循环疲劳试验方法: GB/T 15248—2008[S]. 北京: 中国标准出版社, 2008.
|
18 |
Method of low cycle fatigue testing for metallic materials in liquid helium: JIS Z2283 [S]. Tokyo: Publishing Information Department of Japanese Standards Association, 1998.
|
19 |
TALONEN J, ASPEGREN P, HANNINEN H Comparison of different methods for measuring strain induced α '-martensite content in austenitic steels[J]. Materials Science and Technology, 2004, 20 (12): 1506- 1512
|
20 |
SPENCER K, EMBURY J D, CONLON K T, et al Strengthening via the formation of strain-induced martensite in stainless steels[J]. Materials Science and Engineering A, 2004, 387: 873- 881
|
21 |
吴志强, 唐正友, 李华英, 等 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J]. 金属学报, 2012, 48 (5): 593- 600 WU Zhi-qiang, TANG Zheng-you, LI Hua-ying, et al Effect of strain rate on microstructure evolution and mechanical behavior of a low C high TRIP/TWIP steels[J]. Acta Metallurgica Sinica, 2012, 48 (5): 593- 600
|
22 |
BEHJATI P, NAJAFIZADEH A, KENMANPUR A Microstructural investigation on strengthening mechanisms of AISI 304L austenitic stainless steel during cryogenic deformation[J]. Materials Science and Technology, 2011, 27 (12): 1828- 1832
|
23 |
DE A K, SPEER J G, MATLOCK D K, et al Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2006, 37 (6): 1875- 1886
|
24 |
SHIN H C, HA T K, CHANG Y W Kinetics of deformation induced martensitic transformation in a 304 stainless steel[J]. Scripta Materialia, 2001, 45 (7): 823- 829
|
25 |
张亚军, 魏建勋 800 MPa级低合金高强度钢的循环软硬化特性[J]. 材料开发与应用, 2009, 24 (5): 12- 16 ZHANG Ya-jun, WEI Jian-xun Cyclic softening/hardening characteristics of a high-strength low-alloy 800 MPa grade steel[J]. Development and Application of Materials, 2009, 24 (5): 12- 16
doi: 10.3969/j.issn.1003-1545.2009.05.003
|
26 |
DING H, WU Y, LU Q, et al A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures[J]. Cryogenics, 2019, 101: 89- 100
|
27 |
张庆友. 喷射成形2195铝锂合金微观组织演变及低周疲劳行为研究[D]. 济南: 山东大学, 2019: 39-40. ZHANG Qing-you. Research on spray-formed 2195 aluminium-lithium alloy microstructure evolution and low-cycle fatigue behavior [D]. Jinan: Shandong University, 2019: 39-40.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|