Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (11): 2190-2195    DOI: 10.3785/j.issn.1008-973X.2020.11.014
机械工程     
预应变亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能
王一博1,2(),丁会明3,4,*(),郑津洋1,2,4,陆群杰1,2,王振宇1,2,徐平5,陈志伟6
1. 浙江大学 化工机械研究所,浙江 杭州 310027
2. 浙江大学 高压过程装备与安全教育部工程研究中心,浙江 杭州 310027
3. 浙江大学 机械工程学院,浙江 杭州 310027
4. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
5. 浙江大学 航空航天学院,浙江 杭州 310027
6. 中国特种设备检测研究院,北京 100029
Cryogenic low-cycle fatigue performance of pre-strained metastable austenitic stainless steel (S30408)
Yi-bo WANG1,2(),Hui-ming DING3,4,*(),Jin-yang ZHENG1,2,4,Qun-jie LU1,2,Zhen-yu WANG1,2,Ping XU5,Zhi-wei CHEN6
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China
2. High-pressure Process Equipment and Safety Engineering Research Center of Ministry of Education, Zhejiang University, Hangzhou 310027, China
3. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
5. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
6. China Special Equipment Inspection and Research Institute, Beijing 100029, China
 全文: PDF(1017 KB)   HTML
摘要:

为了研究冷成形和温成形对深冷容器低周疲劳性能的影响,通过液氮温度(77 K)下的拉伸试验和低周疲劳试验,分析预应变(0和0.35)和预应变温度(293 K和363 K)对亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能的影响机制. 0.35预应变使试样内部位错密度增加和产生强化相体心立方马氏体,与母材试样相比,293 K预应变试样初始循环应力幅增大,疲劳辉纹宽度减小,深冷低周疲劳寿命增加显著. 随着预应变温度由293 K升高到363 K,奥氏体相稳定性增加,马氏体相变受到抑制,初始循环应力幅减小,疲劳辉纹宽度增大,预应变对深冷低周疲劳寿命的增益作用减弱. 总体来看,0.35预应变对S30408深冷低周疲劳性能有明显增益作用,但增益程度受预应变温度的限制.

关键词: 液氮温度预应变温度循环应力响应低周疲劳寿命马氏体相变    
Abstract:

Cryogenic pressure vessel’s low-cycle fatigue performance is greatly affected by cold forming and warm forming. Tensile experiments and low-cycle fatigue experiments of metastable austenitic stainless steel S30408 at liquid-nitrogen temperature (77 K) were conducted to analyze the influences of pre-strain (0 and 0.35) and pre-strain temperature (293 K and 363 K) on the cryogenic low-cycle fatigue performance. Due to 0.35 pre-strain resulting in the increase in dislocation density and formation of strain-induced body centered cubic martensite, 293 K pre-strain specimen shows higher initial cyclic stress amplitude, smaller fatigue striation width and longer low-cycle fatigue life than base metal specimen at 77 K. When the pre-strain temperature changes from 293 K to 363 K, the austenite phase owns higher stability, martensitic transformation is blocked, the initial cyclic stress amplitude decreases, the fatigue striation width increases, and the strengthening effects on the cryogenic low-cycle fatigue life caused by 0.35 pre-strain is weakened. In general, 0.35 pre-strain shows significant strengthening effects on the S30408’s cryogenic low-cycle fatigue performance, and the effects are limited by the pre-strain temperature.

Key words: liquid-nitrogen temperature    pre-strain temperature    cyclic stress response    low-cycle fatigue life    martensitic transformation
收稿日期: 2019-10-09 出版日期: 2020-12-15
CLC:  TG 142  
基金资助: 国家重点研发计划资助项目(2016YFC0801905)
通讯作者: 丁会明     E-mail: yibowang@zju.edu.cn;ddhhmm558@163.com
作者简介: 王一博(1994—),男,硕士生,从事金属低温疲劳性能研究. orcid.org/0000-0003-1707-9993. E-mail: yibowang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王一博
丁会明
郑津洋
陆群杰
王振宇
徐平
陈志伟

引用本文:

王一博,丁会明,郑津洋,陆群杰,王振宇,徐平,陈志伟. 预应变亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(11): 2190-2195.

Yi-bo WANG,Hui-ming DING,Jin-yang ZHENG,Qun-jie LU,Zhen-yu WANG,Ping XU,Zhi-wei CHEN. Cryogenic low-cycle fatigue performance of pre-strained metastable austenitic stainless steel (S30408). Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2190-2195.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.014        http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2190

材料 wB /%
C Si Mn P S Cr Ni Mo N
S30408 0.036 0.390 1.120 0.035 0.005 18.310 8.180 0.091 0.032
GB24511 ≤0.08 ≤0.75 ≤2.00 ≤0.035 ≤0.015 ≤18.00~20.00 ≤8.00~12.00 ? ≤0.10
表 1  试验用S30408不锈钢的化学成分
图 1  预应变平板及取样示意图及拉伸后实物照片
图 2  圆棒状试样的几何尺寸
图 3  77 K下S30408母材和预应变材料工程应力-应变曲线
试样 Rp0.2 /MPa Rm /MPa ${w_{\alpha '}}$ /%
试验前 试验后
母材 472 1773 0 73.9
293 K预应变 990 1818 16.1 72.2
363 K预应变 723 1829 0 71.4
表 2  77 K下S30408母材和预应变材料的拉伸力学性能
图 4  S30408母材和预应变材料在77 K下的循环应力响应曲线
图 5  S30408母材和预应变材料的疲劳寿命
试样 E /MPa b c εf σf′ /MPa
母材 173 000 ?0.080 ?0.448 0.0230 1972
293 K预应变 163 404 ?0.058 ?0.349 0.0120 1967
363 K预应变 160 130 ?0.059 ?0.480 0.0095 1758
表 3  S30408预应变材料与母材Manson-Coffin方程的拟合参数
批次 293 K 368 K
Rm /MPa R0.35 /MPa R Rm /MPa R0.35 /MPa R
W 753 592 0.786 604 555 0.919
X 747 628 0.841 588 555 0.944
Y 802 660 0.823 582 532 0.914
Z 744 624 0.839 558 527 0.944
表 4  S30408在不同温度预应变过程中的应力变化
图 6  应变幅为0.7%时不同试样疲劳断口处疲劳辉纹特征
1 ZHENG J, MIAO C, LI Y, et al Investigation on influence factors of mechanical properties of austenitic stainless steels for cold stretched pressure vessels[J]. Journal of Pressure Vessel Technology: Transactions of the ASME, 2012, 134 (6): 061407
2 JIN L, CHO H, LEE C, et al Experimental research and numerical simulation on cryogenic line chill-down process[J]. Cryogenics, 2018, (89): 42- 52
3 DING H, WU Y, LU Q, et al Tensile properties and impact toughness of S30408 stainless steel and its welded joints at cryogenic temperatures[J]. Cryogenics, 2018, (92): 50- 59
4 OH D, LEE J, NOH B, et al Investigation of fatigue performance of low temperature alloys for liquefied natural gas storage tanks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229 (7): 1300- 1314
5 樊雪珺, 惠虎, 黄淞 应变强化型移动式深冷压力容器在控制形变情况下的应力分析[J]. 压力容器, 2019, 36 (8): 16- 22
FAN Xue-jun, HUI Hu, HUANG Song Stress analysis of strain-strengthened transportable cryogenic pressure vessels with deformation controlled[J]. Pressure Vessel Technology, 2019, 36 (8): 16- 22
6 张潇. 亚稳态奥氏体不锈钢标准椭圆形封头温冲压温度研究[D]. 杭州: 浙江大学, 2015: 4-6.
ZHANG Xiao. Research on temperature of warm stamping formed standard elliptical head made of metastable austenitic stainless steel [D]. Hangzhou: Zhejiang University, 2015: 4-6.
7 AKITA M, NAKAJIMA M, TOKAJI K, et al. Fatigue behaviour of pre-strained type 316 stainless steel [C]// Fracture of Nano and Engineering Materials and Structures. Dordrecht: Springer, 2006: 229-230.
8 姜公锋, 孙亮, 陈钢 304不锈钢应变强化疲劳寿命的试验研究[J]. 机械强度, 2014, 36 (6): 850- 855
JIANG Gong-feng, SUN Liang, CHEN Gang Experimental study of 304 stainless steel fatigue life considering material pre-strain hardening effect[J]. Journal of Mechanical Strength, 2014, 36 (6): 850- 855
9 彭开萍, 陈文哲, 钱匡武 动态应变时效对18—8型奥氏体不锈钢低周疲劳行为的影响[J]. 金属学报, 1993, 29 (6): 43- 48
PENG Kai-ping, CHEN Wen-zhe, QIAN Kuang-wu Effect of dynamic strain aging on low cycle fatigue behavior of 18-8 austenitic stainless steel[J]. Acta Metallurgica Sinica, 1993, 29 (6): 43- 48
10 YURI T, OGATA T, SAITO M, et al Effect of welding structure and delta-ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures[J]. Cryogenics, 2000, 40 (4/5): 251- 259
11 MCRAE D M, BALACHANDRAN S, WALSH R P. Fatigue and fracture of three austenitic stainless steels at cryogenic temperatures [J]. IOP Conference Series: Materials Science and Engineering. 2017, 279(1):12001.
12 BOTSHEKAN M, DEGALLAIX S, DESPLANQUES Y, et al. Tensile and LCF properties of AISI 316LN SS at 300 K and 77 K [J]. Fatigue and Fracture of Engineering Materials & Structures, 1998, 21(6): 651-660.
13 WU Y, XU H, LU Q, et al. Low-cycled fatigue life of S30408 stainless steel at liquid-nitrogen temperature [C]// ASME 2018 Pressue Vessels and Piping Conference. Pragure: ASME, 2018.
14 承压设备用不锈钢板及钢带: GB/T 24511—2017[S]. 北京: 中国标准出版社, 2018.
15 LU Q, ZHENG J, ZHANG X. Research on forming temperature of metastable austenitic stainless steel head based on stain-induced martensitic transformation [C]// ASME 2016 Pressure Vessels and Piping Conference. Vancouver: ASME, 2016.
16 金属材料 低温拉伸试验方法: GB/T 13239—2006[S]. 北京: 中国标准出版社, 2007.
17 金属材料轴向等幅低循环疲劳试验方法: GB/T 15248—2008[S]. 北京: 中国标准出版社, 2008.
18 Method of low cycle fatigue testing for metallic materials in liquid helium: JIS Z2283 [S]. Tokyo: Publishing Information Department of Japanese Standards Association, 1998.
19 TALONEN J, ASPEGREN P, HANNINEN H Comparison of different methods for measuring strain induced α '-martensite content in austenitic steels[J]. Materials Science and Technology, 2004, 20 (12): 1506- 1512
20 SPENCER K, EMBURY J D, CONLON K T, et al Strengthening via the formation of strain-induced martensite in stainless steels[J]. Materials Science and Engineering A, 2004, 387: 873- 881
21 吴志强, 唐正友, 李华英, 等 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J]. 金属学报, 2012, 48 (5): 593- 600
WU Zhi-qiang, TANG Zheng-you, LI Hua-ying, et al Effect of strain rate on microstructure evolution and mechanical behavior of a low C high TRIP/TWIP steels[J]. Acta Metallurgica Sinica, 2012, 48 (5): 593- 600
22 BEHJATI P, NAJAFIZADEH A, KENMANPUR A Microstructural investigation on strengthening mechanisms of AISI 304L austenitic stainless steel during cryogenic deformation[J]. Materials Science and Technology, 2011, 27 (12): 1828- 1832
23 DE A K, SPEER J G, MATLOCK D K, et al Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2006, 37 (6): 1875- 1886
24 SHIN H C, HA T K, CHANG Y W Kinetics of deformation induced martensitic transformation in a 304 stainless steel[J]. Scripta Materialia, 2001, 45 (7): 823- 829
25 张亚军, 魏建勋 800 MPa级低合金高强度钢的循环软硬化特性[J]. 材料开发与应用, 2009, 24 (5): 12- 16
ZHANG Ya-jun, WEI Jian-xun Cyclic softening/hardening characteristics of a high-strength low-alloy 800 MPa grade steel[J]. Development and Application of Materials, 2009, 24 (5): 12- 16
doi: 10.3969/j.issn.1003-1545.2009.05.003
26 DING H, WU Y, LU Q, et al A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures[J]. Cryogenics, 2019, 101: 89- 100
27 张庆友. 喷射成形2195铝锂合金微观组织演变及低周疲劳行为研究[D]. 济南: 山东大学, 2019: 39-40.
ZHANG Qing-you. Research on spray-formed 2195 aluminium-lithium alloy microstructure evolution and low-cycle fatigue behavior [D]. Jinan: Shandong University, 2019: 39-40.
[1] 吕福在,胡宇天,伍建军,王林翔. 双程形状记忆效应的唯象动力学模型[J]. 浙江大学学报(工学版), 2020, 54(4): 642-649.