Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (11): 2196-2203    DOI: 10.3785/j.issn.1008-973X.2020.11.015
机械工程     
张力腿浮式风机筋腱失效模式下瞬态响应分析
吴浩宇1,2,3(),赵永生1,2,3,何炎平1,2,3,*(),毛文刚4,阳杰1,2,3,谷孝利1,2,3,黄超1,2,3
1. 上海交通大学 海洋工程国家重点实验室,上海 200240
2. 高新船舶与深海开发装备协同创新中心,上海 200240
3. 上海交通大学 船舶海洋与建筑工程学院,上海 200240
4. 查尔姆斯理工大学 机械与海洋科学系,瑞典 哥德堡 SE-41296
Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions
Hao-yu WU1,2,3(),Yong-sheng ZHAO1,2,3,Yan-ping HE1,2,3,*(),Wen-gang MAO4,Jie YANG1,2,3,Xiao-li GU1,2,3,Chao HUANG1,2,3
1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
3. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4. Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg SE-41296, Sweden
 全文: PDF(1815 KB)   HTML
摘要:

针对风力机-张力腿型支撑平台-筋腱耦合系统,对全耦合动力学仿真软件FAST的系泊载荷计算模块进行二次开发,采用时域分析方法对张力腿浮式风机(FOWT)WindStar TLP system筋腱失效模式下的瞬态响应进行数值仿真分析. 重点研究50 a一遇海况中不同浪向下的浮式风力机支撑平台运动、机舱加速度和筋腱张力等关键参数的瞬态响应. 结果表明:在该工况下支撑平台运动、机舱加速度、筋腱张力的瞬态响应较显著;失效筋腱位于背浪侧时的浮式风力机瞬态响应大于失效筋腱位于迎浪侧时的浮式风力机瞬态响应,当位于背浪侧的失效筋腱与波浪共线时,浮式风力机瞬态响应最大;在极端海况中筋腱失效模式下的筋腱系统安全系数符合美国船级社规范要求,表明该张力腿型浮式风力机具备较好的自存性.

关键词: 海上浮式风力机张力腿平台筋腱失效瞬态响应时域分析    
Abstract:

The mooring load calculation module of the fully coupled dynamic simulation software FAST was recompiled, and the transient response of a tension-leg-platform floating offshore wind turbine (FOWT) named WindStar TLP system under tendon failure was numerically simulated using a time domain method, in terms of the coupled system of wind turbine, tension-leg-type support platform and tendons. The transient response of the key parameters, i.e., platform motions, nacelle accelerations and tensions in the remaining tendons under different wave directions in 50-year extreme condition were investigated. Results show that the transient response of platform motions, nacelle accelerations and tendon tensions under tendon failure are significant. The transient response of FOWT with the broken tendon in back waves is greater than that with the broken tendon in head waves. And when the broken tendon in back waves is aligned with the wave, the transient response of FOWT is the maximum. The safety factor for tendon system under tendon failure in 50-year extreme condition meets the requirements of specification constituted by American Bureau of Shipping (ABS), which verifies the survivability of this tension-leg-type FOWT.

Key words: floating offshore wind turbines    tension-leg platform    tendon failure    transient response    time domain analysis
收稿日期: 2019-11-22 出版日期: 2020-12-15
CLC:  P 753  
基金资助: 国家自然科学基金资助项目(51809170);上海市科委国际合作基金资助项目(19160713600)
通讯作者: 何炎平     E-mail: haoyuwu@sjtu.edu.cn;hyp110@sjtu.edu.cn
作者简介: 吴浩宇(1996—),男,硕士生,从事浮式风力机动力响应研究. orcid.org/0000-0002-4446-6414. E-mail: haoyuwu@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴浩宇
赵永生
何炎平
毛文刚
阳杰
谷孝利
黄超

引用本文:

吴浩宇,赵永生,何炎平,毛文刚,阳杰,谷孝利,黄超. 张力腿浮式风机筋腱失效模式下瞬态响应分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2196-2203.

Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2196-2203.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.015        http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2196

图 1  多立柱张力腿型浮式风力机概念示意图
参数 单位 数值
设计吃水 ${\rm{m}}$ 30.0
排水量 ${\rm{t}}$ 5466.0
下浮体重心高度 ${\rm{m}}$ 24.6
筋腱总预张力 ${\rm{t}}$ 2370.0
筋腱直径 ${\rm{mm}}$ 227.0
筋腱干重 ${\rm{kg} } / { {\rm{m} }}$ 35.4
筋腱轴向刚度 ${\rm{MN}}$ 391.0
筋腱最小破断载荷 ${\rm{MN}}$ 17.26
表 1  多立柱张力腿型浮式风力机主要参数
图 2  弹性杆模型
图 3  筋腱失效数值模拟流程
工况 失效
筋腱
$v_{\rm w}$ /(m·s?1) $H_{\rm s} $ /m $T_{\rm p} $ /s $\gamma$ D /(°)
1 47.5 13.8 19.2 2.4 0~360
2 #1 47.5 13.8 19.2 2.4 0~360
3 #3 47.5 13.8 19.2 2.4 0~360
表 2  筋腱失效工况定义
图 4  风和波浪载荷角度示意图
s
工况 Tsur Tswa Thea Trol Tpit Tyaw
筋腱完整 45.50 45.50 3.66 4.87 4.87 25.60
筋腱#1失效 45.53 45.53 3.94 4.87 6.40 25.65
筋腱#3失效 45.53 45.53 3.94 6.40 6.40 25.65
表 3  多立柱张力腿型浮式风力机的运动固有周期
图 5  静水中筋腱失效模式下纵摇功率谱
图 6  180°浪向下纵摇时历
图 7  180°浪向下纵摇功率谱
图 8  不同浪向下纵摇、横摇最大值
图 9  不同浪向下的纵荡最大值
图 10  60°浪向下机舱横荡加速度时间历程
图 11  不同浪向下机舱加速度最大值
图 12  180°浪向下筋腱#1失效后剩余筋腱张力时间历程
图 13  180°浪向下筋腱#2张力功率谱
图 14  不同浪向下筋腱张力最大值
1 刘利琴, 韩袁昭, 肖昌水, 等 新型浮式基础的海上风机系统动力响应研究[J]. 海洋工程, 2018, 36 (1): 19- 26
LIU Li-qin, HAN Yuan-zhao, XIAO Chang-shui, et al Research on dynamic response of offshore wind turbine system based on new semisubmersible-spar hybrid floating foundation[J]. The Ocean Engineering, 2018, 36 (1): 19- 26
2 TABESHPOUR M R, AHMADI A, MALAYJERDI E Investigation of TLP behavior under tendon damage[J]. Ocean Engineering, 2018, 156: 580- 595
doi: 10.1016/j.oceaneng.2018.03.019
3 TIMERMAN G J, CAMPOS M A D, NISHIMOTO K, et al. Coupled dynamic and static analysis of typhoon TLP accident during extreme environmental conditions [C]// International Conference on Offshore Mechanics and Arctic Engineering. Estoril: OMAE, 2008.
4 李梦阳. 海上浮式风机平台锚泊系统设计与研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
LI Meng-yang. Study on mooring system of floating offshore wind turbine platform [D]. Harbin: Harbin Engineering University, 2013.
5 BAE Y H, KIM M H, SHIN Y S. Rotor-floater-mooring coupled dynamic analysis of mini TLP-type offshore floating wind turbines [C]// International Conference on Ocean, Offshore and Arctic Engineering. Shanghai: OMAE, 2010.
6 BAE Y H, KIM M H, KIM H C Performance changes of a floating offshore wind turbine with broken mooring line[J]. Renewable Energy, 2017, 101: 364- 375
doi: 10.1016/j.renene.2016.08.044
7 LI Y, ZHU Q, LIU L, et al Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines[J]. Renewable Energy, 2018, 122: 576- 588
doi: 10.1016/j.renene.2018.01.067
8 施伟, 郑侃, 任年鑫 南海海况下半潜浮式风机在故障工况下的动力学响应分析[J]. 南方能源建设, 2018, 5 (4): 12- 20
SHI Wei, ZHENG Kan, REN Nian-xin Dynamic analysis of semi-type floating offshore wind turbine with failure conditions under metocean[J]. Southern Energy Construction, 2018, 5 (4): 12- 20
9 Det Norske Veritas. Floating wind turbine structures: DNVGL-ST-D119 [S]. Oslo: [s.n.], 2018.
10 American Bureau of Shipping. Guide for building and classing floating offshore wind turbine installations: ABS 0195 [S]. Houston: [s.n.], 2013.
11 CLASSNK. Guidelines for offshore floating wind turbine structures [S]. Tokyo: [s.n.], 2012.
12 ZHAO Y, YANG J, HE Y Preliminary design of a multi-column TLP foundation for a 5-MW offshore wind turbine[J]. Energies, 2012, 5 (10): 3874- 3891
doi: 10.3390/en5103874
13 周涛, 何炎平, 孟龙, 等 新型6 MW单柱浮式风力机耦合运动分析[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1864- 1873
ZHOU Tao, HE Yan-ping, MENG Long, et al Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1864- 1873
14 JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development [R]. Golden: National Renewable Energy Lab, 2009.
15 MORIARTY P J, HANSEN A C. AeroDyn theory manual [R]. Golden: National Renewable Energy Lab, 2005.
16 BAE Y H. Development of a dynamic mooring module feam for fast v8 [R]. Texas: Texas A&M University, 2014.
17 韦斯俊. 浮式结构物系泊系统时域非线性耦合分析[D]. 哈尔滨: 哈尔滨工业大学, 2014.
WEI Si-jun. Nonlinear time-domain coupled analysis of mooring systems of floating structures [D]. Harbin: Harbin Institute of Technology, 2014.
18 ZHAO Y, YANG J, HE Y, et al Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine[J]. China Ocean Engineering, 2016, 30 (4): 505- 520
doi: 10.1007/s13344-016-0031-9
19 ZHAO Y, YANG J, HE Y, et al Dynamic response analysis of a multi-column tension-leg-type floating wind turbine under combined wind and wave loading[J]. Journal of Shanghai Jiaotong University: Science, 2016, 21 (1): 103- 111
doi: 10.1007/s12204-015-1689-5
20 ZHAO Y, SHE X, HE Y, et al Experimental study on new multi-column tension-leg-type floating wind turbine[J]. China Ocean Engineering, 2018, 32 (2): 123- 131
doi: 10.1007/s13344-018-0014-0
21 Det Norske Veritas. SESAM user manual [R]. Oslo: [s.n.], 2013.
22 赵永生, 杨建民, 何炎平, 等 张力腿式浮动风力机极限载荷分析[J]. 华中科技大学学报: 自然科学版, 2015, 43 (4): 113- 117
ZHAO Yong-sheng, YANG Jian-min, HE Yan-ping, et al Extreme load analysis for a TLP-type floating wind turbine under operating conditions[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (4): 113- 117
[1] 周涛, 何炎平, 孟龙, 赵永生. 新型6 MW单柱浮式风力机耦合运动分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1864-1873.
[2] 鲍侃袁, 沈国辉, 孙炳楠. 双曲冷却塔的脉动风荷载模拟和风致响应[J]. J4, 2010, 44(5): 955-961.
[3] 陈东坡 何乐年 严晓浪. 带有温度补偿的高稳定性低压差线性稳压器[J]. J4, 2007, 41(6): 950-954.
[4] 王世村 孙炳楠 楼文娟 叶尹. 单杆输电塔气弹模型风洞试验研究和理论分析[J]. J4, 2005, 39(1): 87-91.