Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (1): 1-16    DOI: 10.3785/j.issn.1008-973X.2020.01.001
机械工程     
形状记忆聚合物在4D打印技术下的研究及应用
郝天泽(),肖华平*(),刘书海,谷建峰
中国石油大学(北京) 机械与储运工程学院,北京 102249
Research progress and related applications of shape memory polymers in four-dimensional printing technology
Tian-ze HAO(),Hua-ping XIAO*(),Shu-hai LIU,Jian-feng GU
College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
 全文: PDF(3769 KB)   HTML
摘要:

为了打破传统3D打印的静止约束,增加打印结构的可变形性和可设计性,4D打印的相关研究逐渐兴起. 综述了4D打印技术的发展和原理,总结了熔融沉积技术、立体光固化成型技术、聚合物喷射技术和直写技术这4种常见的打印方式的工作方式以及它们对材料的不同需求. 从外界不同激励的角度,对形状记忆聚合物的变形方式、机理及回复程度等进行分析与总结,对形状记忆聚合物目前存在的关键科学难点和未来的发展方向进行总结. 使用形状记忆聚合物的4D打印形状记忆智能结构在微创生物医学、机器人、柔性电子制造等研究领域已经有了应用,并表现出良好前景.

关键词: 4D打印形状记忆聚合物驱动方式智能结构    
Abstract:

Four-dimensional (4D) printing technology undergoes fast development in recent years since 4D-printed structures have increased deformability and designability compared to 3D-printed static structure. Recent developments and printing principle of 4D printing technology were reviewed. Four popular printing methods, namely fused deposition modeling, stereo lithography apparatus, polyJet and direct-writing technology, as well as their different demands for materials, were summarized. From the perspective of different external excitations, deformation mode, mechanism and recovery degree of shape memory polymers were analyzed and summarized. Key scientific difficulties and future development directions of shape memory polymers were discussed. 4D printed shape memory intelligent structures using shape memory polymers were investigated in research fields such as minimally invasive biomedicine, robotics, and flexible electronics manufacturing, presenting great potential application of 4D-printed structures in related fields.

Key words: 4D printing    shape memory polymer    drive mode    smart structure
收稿日期: 2019-09-08 出版日期: 2020-01-05
CLC:  TH 145  
基金资助: 国家自然科学基金资助项目(51575529)
通讯作者: 肖华平     E-mail: 2019310308@student.cup.edu.cn;hxiao@cup.edu.cn
作者简介: 郝天泽(1995—),男,博士生,从事机械制造研究. orcid.org/0000-0002-8488-9673. E-mail: 2019310308@student.cup.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郝天泽
肖华平
刘书海
谷建峰

引用本文:

郝天泽,肖华平,刘书海,谷建峰. 形状记忆聚合物在4D打印技术下的研究及应用[J]. 浙江大学学报(工学版), 2020, 54(1): 1-16.

Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Jian-feng GU. Research progress and related applications of shape memory polymers in four-dimensional printing technology. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 1-16.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.01.001        http://www.zjujournals.com/eng/CN/Y2020/V54/I1/1

图 1  3D打印与4D打印的异同
图 2  打印方式示意图
图 3  SMP的热变形过程示意图
图 4  二维层状SMP的变形效果
图 5  3种材料的复合结构变形及应用
图 6  三形SMP体系
图 7  复杂三维结构的变形能力及形状恢复能力
图 8  热机械循环试验中三维应力-应变-温度关系
图 9  4D打印绳子水中变形及立方体自折叠
图 10  复杂打印结构遇水溶胀
图 11  湿度响应结构的回复过程
图 12  电响应结构实验过程
图 13  含导电纤维SMP的变形过程
图 14  磁响应SMP在磁场中的变形过程
图 15  SMP向日葵光照下的变形及恢复过程
图 16  LCE弹性体光响应过程
图 17  LCE弹性体摩擦方向影响回复过程
图 18  扫描气管支架树、模型及实际支架
图 19  用于细胞培养的微空隙支架
图 20  蠕虫机器人展开结构及前进示意图
图 21  软体机械手抓取过程及机器手指
图 22  SMP在柔性电子领域的应用
图 23  4D打印吸湿排汗衣物
1 崔世强, 李兰芬, 崔波 快速成形制造技术的基本原理与方法[J]. 河北工业科技, 1999, 16 (4): 56- 59
CUI Shi-qiang, LI Lan-fen, CUI Bo The basic principle and method of rapid prototyping technology[J]. Hebei Journal of Industrial Science and Technology, 1999, 16 (4): 56- 59
doi: 10.3969/j.issn.1008-1534.1999.04.008
2 李涤尘, 刘佳煜, 王延杰, 等 4D打印-智能材料的增材制造技术[J]. 机电工程技术, 2014, 43 (05): 1- 9
LI Di-chen, LIU Jia-yu, WANG Yan-jie, et al 4D printing - additive manufacturing technology for smart materials[J]. Mechanical and Electrical Engineering Technology, 2014, 43 (05): 1- 9
doi: 10.3969/j.issn.1009-9492.2014.05.001
3 李小丽, 马剑雄, 李萍, 等 3D打印技术及应用趋势[J]. 自动化仪表, 2014, 35 (1): 1- 5
LI Xiao-li, MA Jian-xiong, LI Ping, et al 3D printing technology and application trend[J]. Process Automation Instrumentation, 2014, 35 (1): 1- 5
doi: 10.3969/j.issn.1000-0380.2014.01.001
4 ELENA B, ANDREA G, LUCA I, et al 3D printing technique applied to rapid casting[J]. Rapid Prototyping Journal, 2007, 13 (3): 148- 155
doi: 10.1108/13552540710750898
5 MOMENI F, SEYED M M H N, XUN L, et al A review of 4D printing[J]. Materials and Design, 2017, 122: 42- 79
6 LENG J S, LAN X, LIU Y J, et al Shape-memory polymers and their composites: stimulus methods and applications[J]. Progress in Materials Science, 2011, 56 (7): 1077- 1135
doi: 10.1016/j.pmatsci.2011.03.001
7 王亚男, 王芳辉, 汪中明, 等 4D打印的研究进展及应用展望[J]. 航空材料学报, 2018, 38 (02): 70- 76
WANG Ya-nan, WANG Fang-hui, WANG Zhong-ming, et al Research progress and application prospect of 4D printing[J]. Journal of Aeronautical Materials, 2018, 38 (02): 70- 76
8 WU J J, HUANG L M, ZHAO Q, et al 4D printing: history and recent progress[J]. Chinese Journal of Polymer Science, 2018, 36 (05): 563- 575
doi: 10.1007/s10118-018-2089-8
9 ZHAO Q, QI H J, XIE T Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding[J]. Progress in Polymer Science, 2015, (49/50): 79- 120
10 ABRAHAMSON E, LAKE M, MUNSHI N, et al. Shape memory polymers for elastic memory composites [C] // AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver: AIAA, 2006.
11 MIAO S, ZHU W, CASTRO N J, et al Four-dimensional printing hierarchy Scaffolds with highly biocompatible smart polymers for tissue engineering applications[J]. Tissue Engineering Part C: Methods, 2016, 22 (10): 952- 963
doi: 10.1089/ten.tec.2015.0542
12 赵姝宁 生物医用形状记忆聚合物前沿进展[J]. 当代化工研究, 2019, (03): 190- 191
ZHAO Shu-ning Advances in biomedical shape memory polymers[J]. Contemporary Chemical Research, 2019, (03): 190- 191
doi: 10.3969/j.issn.1672-8114.2019.03.117
13 YU Z, ZHANG Q, LI L, et al Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes[J]. Advanced Materials, 2011, 23 (5): 664- 668
doi: 10.1002/adma.201003398
14 郑宁, 黄银, 赵骞, 等 面向柔性电子的形状记忆聚合物[J]. 中国科学: 物理学力学天文学, 2016, 46 (04): 8- 17
ZHENG Ning, HUANG Yin, ZHAO Qian, et al Shape memory polymer for flexible electrons[J]. Chinese Science: Physics, Mechanics and Astronomy, 2016, 46 (04): 8- 17
15 FELTON S M, TOLLEY M T, ONAL C D, et al. Robot self-assembly by folding: a printed inchworm robot [C] // 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013.
16 GE Q, SAKHAEI A H, LEE H, et al Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, (6): 31110
17 胡金莲, 杨卓鸿 形状记忆高分子材料的研究及应用[J]. 印染, 2004, 30 (3): 44- 47
HU Jin-lian, YANG Zhuo-hong Research and application of shape memory polymer materials[J]. Dyeing and Finishing, 2004, 30 (3): 44- 47
doi: 10.3321/j.issn:1000-4017.2004.03.017
18 WANG W, YAO L, CHENG C Y, et al Harnessing the hygroscopic and biofl uorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J]. Science Advances, 2017, 3 (5): 1601984
doi: 10.1126/sciadv.1601984
19 CRUZ M F, BORILLE A V Decision methods application to compare conventional manufacturing process with metal additive manufacturing process in the aerospace industry[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 39 (1): 1- 17
20 LIU Y, YANG S F, LEONG K F, et al 3D printing of smart materials: a review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping, 2015, 10 (3): 103- 122
doi: 10.1080/17452759.2015.1097054
21 唐通鸣, 张政, 邓佳文, 等 基于FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015, 43 (06): 228- 230
TANG Tong-ming, ZHANG Zheng, DENG Jia-wen, et al Research status and development trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43 (06): 228- 230
22 YANG Y, CHEN Y, WEI Y, et al 3D printing of shape memory polymer for functional part fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84 (9-12): 2079- 2095
doi: 10.1007/s00170-015-7843-2
23 DUDEK P FDM 3D printing technology in manufacturing composite elements[J]. Archives of Metallurgy and Materials, 2013, 58 (4): 1415- 1418
doi: 10.2478/amm-2013-0186
24 HULL C W The birth of 3D printing[J]. Research-Technology Management, 2015, 58 (06): 25- 30
25 司马建高, 陈军, 李亚东 SLA 3D打印技术在熔模铸造中的应用[J]. 特种铸造有色合金, 2018, 38 (04): 379- 381
SIMA Jian-gao, CHEN Jun, LI Ya-dong SLA application of 3D printing technology in investment casting[J]. Special-cast and Non-ferrous Alloys, 2018, 38 (04): 379- 381
26 WU H, LI D, TANG Y, et al Rapid fabrication of alumina-based ceramic cores for gas turbine blades by stereolithography and gelcasting[J]. Journal of Materials Processing Technology, 2009, 209 (18/19): 5886- 5891
doi: 10.1016/j.jmatprotec.2009.07.002
27 王广春, 袁圆, 刘东旭 光固化快速成型技术的应用及其进展[J]. 航空制造技术, 2011, (06): 26- 29
WANG Guang-chun, YUAN Yuan, LIU Dong-xu Application and progress of light curing rapid prototyping technology[J]. Aeronautical Manufacturing Technology, 2011, (06): 26- 29
doi: 10.3969/j.issn.1671-833X.2011.06.001
28 TABI T, KOVACS N, SAJO I, et al Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based rapid prototyped (polyjet) and conventional steel mold[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123 (1): 349- 361
doi: 10.1007/s10973-015-4997-y
29 SINGH R, SINGH V Experimental investigations for rapid moulding solution of plastics using polyjet printing[J]. Materials Science Forum, 2011, 701: 15- 20
doi: 10.4028/www.scientific.net/MSF.701.15
30 SINGH R Process capability study of polyjet printing for plastic components[J]. Journal of Mechanical Science and Technology, 2011, 25 (4): 1011- 1015
doi: 10.1007/s12206-011-0203-8
31 陈燎, 唐兴伟, 周涵, 等 墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用[J]. 材料导报, 2017, 31 (09): 158- 164
CHEN Liao, TANG Xing-wei, ZHOU Han, et al Ink direct writing, inkjet printing and laser direct writing and their applications in microelectronic devices[J]. Materials Review, 2017, 31 (09): 158- 164
32 魏洪秋, 万雪, 刘彦菊, 等 4D打印形状记忆聚合物材料的研究现状与应用前景[J]. 中国科学: 技术科学, 2018, 48 (01): 2- 16
WEI Hong-qiu, WAN Xue, LIU Yan-ju, et al Research status and application prospect of 4D printing shape memory polymer materials[J]. Science China: Technical Science, 2018, 48 (01): 2- 16
33 GUO S Z, GOSSELIN F, GUERIN N, et al Solvent-cast three-dimensional printing of multifunctional Microsystems[J]. Small, 2013, 9 (24): 4118- 4122
doi: 10.1002/smll.201300975
34 TOBUSHI H, HARA H, YAMADA E, et al. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series [C] // Smart Structures and Materials 1996: Smart Materials Technologies and Biomimetics. San Diego: SPIE, 1996: 483-491.
35 LIU Y, HAN C, TAN H, et al Thermal, mechanical and shape memory properties of shape memory epoxy resin[J]. Materials Science and Engineering: A (Structural Materials: Properties, Microstructure and Processing), 2010, 527 (10-11): 2510- 2514
36 MIAO S, ZHU W, CASTRO N J, et al 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate[J]. Scientific Reports, 2016, (6): 27226
37 GE Q, QI H J, DUNN M L Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103 (13): 68- 225
38 NI Q Q, ZHANG C S, FU Y, et al Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites[J]. Composite Structures, 2007, 81 (2): 176- 184
doi: 10.1016/j.compstruct.2006.08.017
39 WU J, YUAN C, DING Z, et al Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Scientific Reports, 2016, 6: 24224
doi: 10.1038/srep24224
40 XIE T, XIAO X, CHENG Y T Revealing triple-shape memory effect by polymer bilayers[J]. Macromolecular Rapid Communications, 2009, 30 (21): 1823- 1827
doi: 10.1002/marc.200900409
41 LUO X, MATHER P T Triple-shape polymeric composites (TSPCs)[J]. Advanced Functional Materials, 2010, 20 (16): 2649- 2656
doi: 10.1002/adfm.201000052
42 ZAREK M, LAYANI M, COOPERSTEIN I, et al 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials, 2016, 28 (22): 4166
doi: 10.1002/adma.201670148
43 HUANG L, JIANG R, WU J, et al Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Materials, 2017, 29 (7): 1605390
doi: 10.1002/adma.201605390
44 NELSON B A, KING W P, GALL K Shape recovery of nanoscale imprints in a thermoset " shape memory” polymer[J]. Applied Physics Letters, 2005, 86 (10): 91
45 MA M, GUO L, ANSERSON D G, et al Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science, 2013, 339 (6116): 186- 189
doi: 10.1126/science.1230262
46 SKYLAR T 4D printing: multi-material shape change[J]. Architectural Design, 2014, 84 (1): 116- 121
doi: 10.1002/ad.1710
47 HUANG W M, YANG B, AN L, et al Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism[J]. Applied Physics Letters, 2005, 86 (11): 114105- 114105
doi: 10.1063/1.1880448
48 SKYLAR T. The emergence of " 4D printing”[EB/OL]. [2019-09-22]. https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing.
49 GLADMAN S A, MATSUMOTO E A, NUZZO R G, et al Biomimetic 4D printing[J]. Nature Materials, 2016, (15): 413- 418
50 MAO Y, DING Z, YUAN C, et al 3D printed reversible shape changing components with stimuli responsive materials[J]. Scientific Reports, 2016, (6): 24761
51 NAFICY S, GATELY R, GORKIN R, et al 4D printing of reversible shape morphing hydrogel structures[J]. Macromolecular Materials and Engineering, 2016, 302 (1): 1600212
52 FEI G, LI G, WU L, et al A spatially and temporally controlled shape memory process for electrically conductive polymer: carbon nanotube composites[J]. Soft Matter, 2012, 8 (19): 5123- 5126
doi: 10.1039/c2sm07357a
53 YU K, ZHANG Z, LIU Y, et al Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity[J]. Applied Physics Letters, 2011, 98 (7): 2351
54 LE H H, KOLESOV I, ALI Z, et al Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites[J]. Journal of Materials Science, 2010, 45 (21): 5851- 5859
doi: 10.1007/s10853-010-4661-7
55 LENG J S, HUANG W M, LAN X, et al Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite[J]. Applied Physics Letters, 2008, 92 (20): 3408
56 GONG X, LIU L, LIU Y, et al An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt[J]. Smart Materials and Structures, 2016, 25 (3): 035036
doi: 10.1088/0964-1726/25/3/035036
57 PAIK I H, GOO N S, YOON K J, et al Electric resistance property of a conducting shape memory polyurethane actuator[J]. Key Engineering Materials, 2005, 297-300: 1539- 1544
doi: 10.4028/www.scientific.net/KEM.297-300.1539
58 吕海宝. 电驱动与溶液驱动形状记忆聚合物混合体系及其本构方程[D]. 哈尔滨: 哈尔滨工业大学, 2010.
LV Hai-bao. Shape memory polymer mixture system and its constitutive equation driven by electric and solution [D]. Harbin: Harbin Institute of Technology, 2010.
59 YANG C, WANG B, LI D, et al Modeling and characterization for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing[J]. Virtual and Physical Prototyping, 2017, 12 (1): 69- 76
doi: 10.1080/17452759.2016.1265992
60 HERGT R, ANDRA W, DAMBLY C G, et al Physical limits of hyperthermia using magnetite fine particles[J]. IEEE Transactions on Magnetics, 1998, 34 (5): 3745- 3754
doi: 10.1109/20.718537
61 HILGER I, HERGT R, KAISER W A Use of magnetic nanoparticle heating in the treatment of breast cancer[J]. IEE Proceedings - Nanobiotechnology, 2005, 152 (1): 33- 39
doi: 10.1049/ip-nbt:20055018
62 MOHR R, KRATZ K, WEIGEL T, et al Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (10): 3540- 3545
doi: 10.1073/pnas.0600079103
63 ZHENG X, ZHOU S, XIAO Y, et al Shape memory effect of poly(d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles[J]. Colloids Surf B Biointerfaces, 2009, 71 (1): 67- 72
doi: 10.1016/j.colsurfb.2009.01.009
64 YAKACKI C M, SATARKAR N S, GALL K, et al Shape-memory polymer networks with Fe3O4 nanoparticles for remote activation[J]. Journal of Applied Polymer Science, 2009, 112 (5): 3166- 3176
doi: 10.1002/app.29845
65 郑志超. 聚乳酸基形状记忆聚合物的性能研究及其4D打印[D]. 哈尔滨: 哈尔滨工业大学, 2017.
ZHENG Zhi-chao. Lactic acid group shape storage physical performance research and 4D marking [D]. Harbin: Harbin Institute of Technology, 2017.
66 BUCKLEY P R, MCKINLEY G H, WILSON T S, et al Inductively heated shape memory polymer for the magnetic actuation of medical devices[J]. IEEE Transactions on Biomedical Engineering, 2006, 53 (10): 2075- 2083
doi: 10.1109/TBME.2006.877113
67 RAZZAQ M Y, ANHALT M, FRORMANN L, et al Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers[J]. Materials Science and Engineering A (Structural Materials: Properties, Microstructure and Processing), 2007, 444 (1/2): 227- 235
doi: 10.1016/j.msea.2006.08.083
68 YANG H, LEOW W R, WANG T, et al 3D printed photoresponsive devices based on shape memory composites[J]. Advanced Materials, 2017, 29 (33): 170127
69 DAI S, RAVI P, TAM K C Thermo- and photo-responsive polymeric systems[J]. Soft Matter, 2009, 5: 2513- 2533
70 冯伟. 高强度与光控形状记忆水凝胶的制备与性能研究[D]. 合肥: 中国科学技术大学, 2016.
FENG Wei. Preparation and properties of high strength and light controlled shape memory hydrogels [D]. Hefei: University of Science and Technology of China, 2016.
71 翟媛萍, 章维一, 侯丽雅 一种用于快速成型工艺的红光光敏树脂的性能研究[J]. 高分子学报, 2003, (06): 883- 886
ZHAI Yuan-ping, ZHANG Wei-yi, HOU Li-ya Study on the properties of a red light sensitive resin for rapid prototyping[J]. Acta Polymerica Sinica, 2003, (06): 883- 886
doi: 10.3321/j.issn:1000-3304.2003.06.023
72 JOCHUM F D, THEATO P Temperature- and light-responsive smart polymer materials[J]. Chemical Society Reviews, 2013, 42 (17): 7468- 7483
doi: 10.1039/C2CS35191A
73 FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al A new opto-mechanical effect in solids[J]. Physical Review Letters, 2001, 87 (1): 015501
doi: 10.1103/PhysRevLett.87.015501
74 LENDLEIN A, JIANG H, JUNGER O, et al Light-induced shape-memory polymers[J]. Nature, 2005, 434 (7035): 879- 882
doi: 10.1038/nature03496
75 JIANG H Y, KELCH S, LENDLEIN A Polymers move in Response to light[J]. Advanced Materials, 2006, 18 (11): 1471- 1475
doi: 10.1002/adma.200502266
76 LOPEZ M C, FINKELMANN H, PMUHORAY P P, et al Fast liquid-crystal elastomer swims into the dark[J]. Nature Materials, 2004, 3 (5): 307- 310
doi: 10.1038/nmat1118
77 IKEDA T, NAKANO M, YU Y, et al Anisotropic bending and unbending behavior of Azobenzene liquid-crystalline gels by light exposure[J]. Advanced Materials, 2003, 15 (3): 201- 205
doi: 10.1002/adma.200390045
78 IRIE M, KUNWATCHAKUN D Photoresponsive polymers. 8. reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives[J]. Macromolecules, 1986, 19 (10): 2476- 2480
doi: 10.1021/ma00164a003
79 GYEONG H Y, HYUNGSEOK L, WOO D C 3D printing of organs-on-chips[J]. Bioengineering, 2017, 4 (1): 10- 31
80 MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
81 ZAREK M, MANSOUR N, SHAPIRA S, et al 4D printing of shape memory-based personalized Endoluminal medical devices[J]. Macromolecular Rapid Communications, 2017, 38 (2): 1600628
doi: 10.1002/marc.201600628
82 MORRISON R J, HOLLISTER S J, NIEDNER M F, et al Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients[J]. Science Translational Medicine, 2015, 7 (285): 285- 308
83 HENDRIKSON W J, ROUWKEMA J, CLEMENTI F, et al Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells[J]. Biofabrication, 2017, 9 (3): 031001
doi: 10.1088/1758-5090/aa8114
84 TOLLEY M T, FELTON S M, MIYASHITA S, et al. Self-folding shape memory laminates for automated fabrication [C] // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2013.
85 FELTON S M, TOLLEY M T, SHIN B H, et al Self-folding with shape memory composites[J]. Soft Matter, 2013, 9: 7688- 7694
doi: 10.1039/c3sm51003d
86 YANG Y, CHEN Y. Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer [C] // 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). UTown: IEEE, 2016.
87 KIM D H, XIAO J, SONG J, et al Stretchable, curvilinear electronics based on inorganic materials[J]. Cheminform, 2010, 22 (19): 2108- 2124
88 KHANG D Y, JIANG H Q, HUANG Y, et al A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311 (5758): 208- 212
doi: 10.1126/science.1121401
89 SEKITANI T, ZSCHIESCHANG U, KLAUK H, et al Flexible organic transistors and circuits with extreme bending stability[J]. Nature Materials, 2010, 9 (12): 1015- 1022
doi: 10.1038/nmat2896
90 REEDER J, KALTENBRUNNER M, WARE T, et al Mechanically adaptive organic transistors for implantable electronics[J]. Advanced Materials, 2014, 26 (29): 4967- 4973
doi: 10.1002/adma.201400420
91 XU H, YU C, WANG S, et al Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23 (26): 3364
doi: 10.1002/adfm.201370129
[1] 郝天泽,肖华平,刘书海,张超,马豪. 集成化智能软体机器人研究进展[J]. 浙江大学学报(工学版), 2021, 55(2): 229-243.
[2] 樊鹏玄, 陈务军, 赵兵, 胡建辉, 张大旭, 房光强, 彭福军. Prony级数形式的形状记忆聚合物有限应变黏弹性本构模型[J]. 浙江大学学报(工学版), 2018, 52(6): 1194-1200.
[3] 程华强,罗尧治,许贤. 自适应张弦梁结构的非线性内力控制[J]. 浙江大学学报(工学版), 2014, 48(7): 1155-1161.