机械工程 |
|
|
|
|
形状记忆聚合物在4D打印技术下的研究及应用 |
郝天泽( ),肖华平*( ),刘书海,谷建峰 |
中国石油大学(北京) 机械与储运工程学院,北京 102249 |
|
Research progress and related applications of shape memory polymers in four-dimensional printing technology |
Tian-ze HAO( ),Hua-ping XIAO*( ),Shu-hai LIU,Jian-feng GU |
College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China |
引用本文:
郝天泽,肖华平,刘书海,谷建峰. 形状记忆聚合物在4D打印技术下的研究及应用[J]. 浙江大学学报(工学版), 2020, 54(1): 1-16.
Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Jian-feng GU. Research progress and related applications of shape memory polymers in four-dimensional printing technology. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 1-16.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.01.001
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I1/1
|
1 |
崔世强, 李兰芬, 崔波 快速成形制造技术的基本原理与方法[J]. 河北工业科技, 1999, 16 (4): 56- 59 CUI Shi-qiang, LI Lan-fen, CUI Bo The basic principle and method of rapid prototyping technology[J]. Hebei Journal of Industrial Science and Technology, 1999, 16 (4): 56- 59
doi: 10.3969/j.issn.1008-1534.1999.04.008
|
2 |
李涤尘, 刘佳煜, 王延杰, 等 4D打印-智能材料的增材制造技术[J]. 机电工程技术, 2014, 43 (05): 1- 9 LI Di-chen, LIU Jia-yu, WANG Yan-jie, et al 4D printing - additive manufacturing technology for smart materials[J]. Mechanical and Electrical Engineering Technology, 2014, 43 (05): 1- 9
doi: 10.3969/j.issn.1009-9492.2014.05.001
|
3 |
李小丽, 马剑雄, 李萍, 等 3D打印技术及应用趋势[J]. 自动化仪表, 2014, 35 (1): 1- 5 LI Xiao-li, MA Jian-xiong, LI Ping, et al 3D printing technology and application trend[J]. Process Automation Instrumentation, 2014, 35 (1): 1- 5
doi: 10.3969/j.issn.1000-0380.2014.01.001
|
4 |
ELENA B, ANDREA G, LUCA I, et al 3D printing technique applied to rapid casting[J]. Rapid Prototyping Journal, 2007, 13 (3): 148- 155
doi: 10.1108/13552540710750898
|
5 |
MOMENI F, SEYED M M H N, XUN L, et al A review of 4D printing[J]. Materials and Design, 2017, 122: 42- 79
|
6 |
LENG J S, LAN X, LIU Y J, et al Shape-memory polymers and their composites: stimulus methods and applications[J]. Progress in Materials Science, 2011, 56 (7): 1077- 1135
doi: 10.1016/j.pmatsci.2011.03.001
|
7 |
王亚男, 王芳辉, 汪中明, 等 4D打印的研究进展及应用展望[J]. 航空材料学报, 2018, 38 (02): 70- 76 WANG Ya-nan, WANG Fang-hui, WANG Zhong-ming, et al Research progress and application prospect of 4D printing[J]. Journal of Aeronautical Materials, 2018, 38 (02): 70- 76
|
8 |
WU J J, HUANG L M, ZHAO Q, et al 4D printing: history and recent progress[J]. Chinese Journal of Polymer Science, 2018, 36 (05): 563- 575
doi: 10.1007/s10118-018-2089-8
|
9 |
ZHAO Q, QI H J, XIE T Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding[J]. Progress in Polymer Science, 2015, (49/50): 79- 120
|
10 |
ABRAHAMSON E, LAKE M, MUNSHI N, et al. Shape memory polymers for elastic memory composites [C] // AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver: AIAA, 2006.
|
11 |
MIAO S, ZHU W, CASTRO N J, et al Four-dimensional printing hierarchy Scaffolds with highly biocompatible smart polymers for tissue engineering applications[J]. Tissue Engineering Part C: Methods, 2016, 22 (10): 952- 963
doi: 10.1089/ten.tec.2015.0542
|
12 |
赵姝宁 生物医用形状记忆聚合物前沿进展[J]. 当代化工研究, 2019, (03): 190- 191 ZHAO Shu-ning Advances in biomedical shape memory polymers[J]. Contemporary Chemical Research, 2019, (03): 190- 191
doi: 10.3969/j.issn.1672-8114.2019.03.117
|
13 |
YU Z, ZHANG Q, LI L, et al Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes[J]. Advanced Materials, 2011, 23 (5): 664- 668
doi: 10.1002/adma.201003398
|
14 |
郑宁, 黄银, 赵骞, 等 面向柔性电子的形状记忆聚合物[J]. 中国科学: 物理学力学天文学, 2016, 46 (04): 8- 17 ZHENG Ning, HUANG Yin, ZHAO Qian, et al Shape memory polymer for flexible electrons[J]. Chinese Science: Physics, Mechanics and Astronomy, 2016, 46 (04): 8- 17
|
15 |
FELTON S M, TOLLEY M T, ONAL C D, et al. Robot self-assembly by folding: a printed inchworm robot [C] // 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013.
|
16 |
GE Q, SAKHAEI A H, LEE H, et al Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, (6): 31110
|
17 |
胡金莲, 杨卓鸿 形状记忆高分子材料的研究及应用[J]. 印染, 2004, 30 (3): 44- 47 HU Jin-lian, YANG Zhuo-hong Research and application of shape memory polymer materials[J]. Dyeing and Finishing, 2004, 30 (3): 44- 47
doi: 10.3321/j.issn:1000-4017.2004.03.017
|
18 |
WANG W, YAO L, CHENG C Y, et al Harnessing the hygroscopic and biofl uorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J]. Science Advances, 2017, 3 (5): 1601984
doi: 10.1126/sciadv.1601984
|
19 |
CRUZ M F, BORILLE A V Decision methods application to compare conventional manufacturing process with metal additive manufacturing process in the aerospace industry[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 39 (1): 1- 17
|
20 |
LIU Y, YANG S F, LEONG K F, et al 3D printing of smart materials: a review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping, 2015, 10 (3): 103- 122
doi: 10.1080/17452759.2015.1097054
|
21 |
唐通鸣, 张政, 邓佳文, 等 基于FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015, 43 (06): 228- 230 TANG Tong-ming, ZHANG Zheng, DENG Jia-wen, et al Research status and development trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43 (06): 228- 230
|
22 |
YANG Y, CHEN Y, WEI Y, et al 3D printing of shape memory polymer for functional part fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84 (9-12): 2079- 2095
doi: 10.1007/s00170-015-7843-2
|
23 |
DUDEK P FDM 3D printing technology in manufacturing composite elements[J]. Archives of Metallurgy and Materials, 2013, 58 (4): 1415- 1418
doi: 10.2478/amm-2013-0186
|
24 |
HULL C W The birth of 3D printing[J]. Research-Technology Management, 2015, 58 (06): 25- 30
|
25 |
司马建高, 陈军, 李亚东 SLA 3D打印技术在熔模铸造中的应用[J]. 特种铸造有色合金, 2018, 38 (04): 379- 381 SIMA Jian-gao, CHEN Jun, LI Ya-dong SLA application of 3D printing technology in investment casting[J]. Special-cast and Non-ferrous Alloys, 2018, 38 (04): 379- 381
|
26 |
WU H, LI D, TANG Y, et al Rapid fabrication of alumina-based ceramic cores for gas turbine blades by stereolithography and gelcasting[J]. Journal of Materials Processing Technology, 2009, 209 (18/19): 5886- 5891
doi: 10.1016/j.jmatprotec.2009.07.002
|
27 |
王广春, 袁圆, 刘东旭 光固化快速成型技术的应用及其进展[J]. 航空制造技术, 2011, (06): 26- 29 WANG Guang-chun, YUAN Yuan, LIU Dong-xu Application and progress of light curing rapid prototyping technology[J]. Aeronautical Manufacturing Technology, 2011, (06): 26- 29
doi: 10.3969/j.issn.1671-833X.2011.06.001
|
28 |
TABI T, KOVACS N, SAJO I, et al Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based rapid prototyped (polyjet) and conventional steel mold[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123 (1): 349- 361
doi: 10.1007/s10973-015-4997-y
|
29 |
SINGH R, SINGH V Experimental investigations for rapid moulding solution of plastics using polyjet printing[J]. Materials Science Forum, 2011, 701: 15- 20
doi: 10.4028/www.scientific.net/MSF.701.15
|
30 |
SINGH R Process capability study of polyjet printing for plastic components[J]. Journal of Mechanical Science and Technology, 2011, 25 (4): 1011- 1015
doi: 10.1007/s12206-011-0203-8
|
31 |
陈燎, 唐兴伟, 周涵, 等 墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用[J]. 材料导报, 2017, 31 (09): 158- 164 CHEN Liao, TANG Xing-wei, ZHOU Han, et al Ink direct writing, inkjet printing and laser direct writing and their applications in microelectronic devices[J]. Materials Review, 2017, 31 (09): 158- 164
|
32 |
魏洪秋, 万雪, 刘彦菊, 等 4D打印形状记忆聚合物材料的研究现状与应用前景[J]. 中国科学: 技术科学, 2018, 48 (01): 2- 16 WEI Hong-qiu, WAN Xue, LIU Yan-ju, et al Research status and application prospect of 4D printing shape memory polymer materials[J]. Science China: Technical Science, 2018, 48 (01): 2- 16
|
33 |
GUO S Z, GOSSELIN F, GUERIN N, et al Solvent-cast three-dimensional printing of multifunctional Microsystems[J]. Small, 2013, 9 (24): 4118- 4122
doi: 10.1002/smll.201300975
|
34 |
TOBUSHI H, HARA H, YAMADA E, et al. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series [C] // Smart Structures and Materials 1996: Smart Materials Technologies and Biomimetics. San Diego: SPIE, 1996: 483-491.
|
35 |
LIU Y, HAN C, TAN H, et al Thermal, mechanical and shape memory properties of shape memory epoxy resin[J]. Materials Science and Engineering: A (Structural Materials: Properties, Microstructure and Processing), 2010, 527 (10-11): 2510- 2514
|
36 |
MIAO S, ZHU W, CASTRO N J, et al 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate[J]. Scientific Reports, 2016, (6): 27226
|
37 |
GE Q, QI H J, DUNN M L Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103 (13): 68- 225
|
38 |
NI Q Q, ZHANG C S, FU Y, et al Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites[J]. Composite Structures, 2007, 81 (2): 176- 184
doi: 10.1016/j.compstruct.2006.08.017
|
39 |
WU J, YUAN C, DING Z, et al Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Scientific Reports, 2016, 6: 24224
doi: 10.1038/srep24224
|
40 |
XIE T, XIAO X, CHENG Y T Revealing triple-shape memory effect by polymer bilayers[J]. Macromolecular Rapid Communications, 2009, 30 (21): 1823- 1827
doi: 10.1002/marc.200900409
|
41 |
LUO X, MATHER P T Triple-shape polymeric composites (TSPCs)[J]. Advanced Functional Materials, 2010, 20 (16): 2649- 2656
doi: 10.1002/adfm.201000052
|
42 |
ZAREK M, LAYANI M, COOPERSTEIN I, et al 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials, 2016, 28 (22): 4166
doi: 10.1002/adma.201670148
|
43 |
HUANG L, JIANG R, WU J, et al Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Materials, 2017, 29 (7): 1605390
doi: 10.1002/adma.201605390
|
44 |
NELSON B A, KING W P, GALL K Shape recovery of nanoscale imprints in a thermoset " shape memory” polymer[J]. Applied Physics Letters, 2005, 86 (10): 91
|
45 |
MA M, GUO L, ANSERSON D G, et al Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science, 2013, 339 (6116): 186- 189
doi: 10.1126/science.1230262
|
46 |
SKYLAR T 4D printing: multi-material shape change[J]. Architectural Design, 2014, 84 (1): 116- 121
doi: 10.1002/ad.1710
|
47 |
HUANG W M, YANG B, AN L, et al Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism[J]. Applied Physics Letters, 2005, 86 (11): 114105- 114105
doi: 10.1063/1.1880448
|
48 |
SKYLAR T. The emergence of " 4D printing”[EB/OL]. [2019-09-22]. https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing.
|
49 |
GLADMAN S A, MATSUMOTO E A, NUZZO R G, et al Biomimetic 4D printing[J]. Nature Materials, 2016, (15): 413- 418
|
50 |
MAO Y, DING Z, YUAN C, et al 3D printed reversible shape changing components with stimuli responsive materials[J]. Scientific Reports, 2016, (6): 24761
|
51 |
NAFICY S, GATELY R, GORKIN R, et al 4D printing of reversible shape morphing hydrogel structures[J]. Macromolecular Materials and Engineering, 2016, 302 (1): 1600212
|
52 |
FEI G, LI G, WU L, et al A spatially and temporally controlled shape memory process for electrically conductive polymer: carbon nanotube composites[J]. Soft Matter, 2012, 8 (19): 5123- 5126
doi: 10.1039/c2sm07357a
|
53 |
YU K, ZHANG Z, LIU Y, et al Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity[J]. Applied Physics Letters, 2011, 98 (7): 2351
|
54 |
LE H H, KOLESOV I, ALI Z, et al Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites[J]. Journal of Materials Science, 2010, 45 (21): 5851- 5859
doi: 10.1007/s10853-010-4661-7
|
55 |
LENG J S, HUANG W M, LAN X, et al Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite[J]. Applied Physics Letters, 2008, 92 (20): 3408
|
56 |
GONG X, LIU L, LIU Y, et al An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt[J]. Smart Materials and Structures, 2016, 25 (3): 035036
doi: 10.1088/0964-1726/25/3/035036
|
57 |
PAIK I H, GOO N S, YOON K J, et al Electric resistance property of a conducting shape memory polyurethane actuator[J]. Key Engineering Materials, 2005, 297-300: 1539- 1544
doi: 10.4028/www.scientific.net/KEM.297-300.1539
|
58 |
吕海宝. 电驱动与溶液驱动形状记忆聚合物混合体系及其本构方程[D]. 哈尔滨: 哈尔滨工业大学, 2010. LV Hai-bao. Shape memory polymer mixture system and its constitutive equation driven by electric and solution [D]. Harbin: Harbin Institute of Technology, 2010.
|
59 |
YANG C, WANG B, LI D, et al Modeling and characterization for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing[J]. Virtual and Physical Prototyping, 2017, 12 (1): 69- 76
doi: 10.1080/17452759.2016.1265992
|
60 |
HERGT R, ANDRA W, DAMBLY C G, et al Physical limits of hyperthermia using magnetite fine particles[J]. IEEE Transactions on Magnetics, 1998, 34 (5): 3745- 3754
doi: 10.1109/20.718537
|
61 |
HILGER I, HERGT R, KAISER W A Use of magnetic nanoparticle heating in the treatment of breast cancer[J]. IEE Proceedings - Nanobiotechnology, 2005, 152 (1): 33- 39
doi: 10.1049/ip-nbt:20055018
|
62 |
MOHR R, KRATZ K, WEIGEL T, et al Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (10): 3540- 3545
doi: 10.1073/pnas.0600079103
|
63 |
ZHENG X, ZHOU S, XIAO Y, et al Shape memory effect of poly(d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles[J]. Colloids Surf B Biointerfaces, 2009, 71 (1): 67- 72
doi: 10.1016/j.colsurfb.2009.01.009
|
64 |
YAKACKI C M, SATARKAR N S, GALL K, et al Shape-memory polymer networks with Fe3O4 nanoparticles for remote activation[J]. Journal of Applied Polymer Science, 2009, 112 (5): 3166- 3176
doi: 10.1002/app.29845
|
65 |
郑志超. 聚乳酸基形状记忆聚合物的性能研究及其4D打印[D]. 哈尔滨: 哈尔滨工业大学, 2017. ZHENG Zhi-chao. Lactic acid group shape storage physical performance research and 4D marking [D]. Harbin: Harbin Institute of Technology, 2017.
|
66 |
BUCKLEY P R, MCKINLEY G H, WILSON T S, et al Inductively heated shape memory polymer for the magnetic actuation of medical devices[J]. IEEE Transactions on Biomedical Engineering, 2006, 53 (10): 2075- 2083
doi: 10.1109/TBME.2006.877113
|
67 |
RAZZAQ M Y, ANHALT M, FRORMANN L, et al Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers[J]. Materials Science and Engineering A (Structural Materials: Properties, Microstructure and Processing), 2007, 444 (1/2): 227- 235
doi: 10.1016/j.msea.2006.08.083
|
68 |
YANG H, LEOW W R, WANG T, et al 3D printed photoresponsive devices based on shape memory composites[J]. Advanced Materials, 2017, 29 (33): 170127
|
69 |
DAI S, RAVI P, TAM K C Thermo- and photo-responsive polymeric systems[J]. Soft Matter, 2009, 5: 2513- 2533
|
70 |
冯伟. 高强度与光控形状记忆水凝胶的制备与性能研究[D]. 合肥: 中国科学技术大学, 2016. FENG Wei. Preparation and properties of high strength and light controlled shape memory hydrogels [D]. Hefei: University of Science and Technology of China, 2016.
|
71 |
翟媛萍, 章维一, 侯丽雅 一种用于快速成型工艺的红光光敏树脂的性能研究[J]. 高分子学报, 2003, (06): 883- 886 ZHAI Yuan-ping, ZHANG Wei-yi, HOU Li-ya Study on the properties of a red light sensitive resin for rapid prototyping[J]. Acta Polymerica Sinica, 2003, (06): 883- 886
doi: 10.3321/j.issn:1000-3304.2003.06.023
|
72 |
JOCHUM F D, THEATO P Temperature- and light-responsive smart polymer materials[J]. Chemical Society Reviews, 2013, 42 (17): 7468- 7483
doi: 10.1039/C2CS35191A
|
73 |
FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al A new opto-mechanical effect in solids[J]. Physical Review Letters, 2001, 87 (1): 015501
doi: 10.1103/PhysRevLett.87.015501
|
74 |
LENDLEIN A, JIANG H, JUNGER O, et al Light-induced shape-memory polymers[J]. Nature, 2005, 434 (7035): 879- 882
doi: 10.1038/nature03496
|
75 |
JIANG H Y, KELCH S, LENDLEIN A Polymers move in Response to light[J]. Advanced Materials, 2006, 18 (11): 1471- 1475
doi: 10.1002/adma.200502266
|
76 |
LOPEZ M C, FINKELMANN H, PMUHORAY P P, et al Fast liquid-crystal elastomer swims into the dark[J]. Nature Materials, 2004, 3 (5): 307- 310
doi: 10.1038/nmat1118
|
77 |
IKEDA T, NAKANO M, YU Y, et al Anisotropic bending and unbending behavior of Azobenzene liquid-crystalline gels by light exposure[J]. Advanced Materials, 2003, 15 (3): 201- 205
doi: 10.1002/adma.200390045
|
78 |
IRIE M, KUNWATCHAKUN D Photoresponsive polymers. 8. reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives[J]. Macromolecules, 1986, 19 (10): 2476- 2480
doi: 10.1021/ma00164a003
|
79 |
GYEONG H Y, HYUNGSEOK L, WOO D C 3D printing of organs-on-chips[J]. Bioengineering, 2017, 4 (1): 10- 31
|
80 |
MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
|
81 |
ZAREK M, MANSOUR N, SHAPIRA S, et al 4D printing of shape memory-based personalized Endoluminal medical devices[J]. Macromolecular Rapid Communications, 2017, 38 (2): 1600628
doi: 10.1002/marc.201600628
|
82 |
MORRISON R J, HOLLISTER S J, NIEDNER M F, et al Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients[J]. Science Translational Medicine, 2015, 7 (285): 285- 308
|
83 |
HENDRIKSON W J, ROUWKEMA J, CLEMENTI F, et al Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells[J]. Biofabrication, 2017, 9 (3): 031001
doi: 10.1088/1758-5090/aa8114
|
84 |
TOLLEY M T, FELTON S M, MIYASHITA S, et al. Self-folding shape memory laminates for automated fabrication [C] // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2013.
|
85 |
FELTON S M, TOLLEY M T, SHIN B H, et al Self-folding with shape memory composites[J]. Soft Matter, 2013, 9: 7688- 7694
doi: 10.1039/c3sm51003d
|
86 |
YANG Y, CHEN Y. Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer [C] // 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). UTown: IEEE, 2016.
|
87 |
KIM D H, XIAO J, SONG J, et al Stretchable, curvilinear electronics based on inorganic materials[J]. Cheminform, 2010, 22 (19): 2108- 2124
|
88 |
KHANG D Y, JIANG H Q, HUANG Y, et al A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311 (5758): 208- 212
doi: 10.1126/science.1121401
|
89 |
SEKITANI T, ZSCHIESCHANG U, KLAUK H, et al Flexible organic transistors and circuits with extreme bending stability[J]. Nature Materials, 2010, 9 (12): 1015- 1022
doi: 10.1038/nmat2896
|
90 |
REEDER J, KALTENBRUNNER M, WARE T, et al Mechanically adaptive organic transistors for implantable electronics[J]. Advanced Materials, 2014, 26 (29): 4967- 4973
doi: 10.1002/adma.201400420
|
91 |
XU H, YU C, WANG S, et al Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23 (26): 3364
doi: 10.1002/adfm.201370129
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|