Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1656-1662    DOI: 10.3785/j.issn.1008-973X.2019.09.003
机械工程     
旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响
张雨(),张开林*(),姚远
西南交通大学 牵引动力国家重点实验室,四川 成都,610031
Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal
Yu ZHANG(),Kai-lin ZHANG*(),Yuan YAO
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
 全文: PDF(1090 KB)   HTML
摘要:

探索润滑油与理想气体混合介质下齿轮箱密封泄漏机理,分析转子旋转效应和热效应对迷宫密封泄漏特性的影响,研究旋转效应和热效应造成密封系统转子结构变形和流场变化导致密封性能变化的影响规律. 研究结果表明:旋转效应和热效应减小了迷宫密封间隙宽度,其中,热效应膨胀变形量高于旋转效应离心变形一个量级;转子转速存在一个阈值(4 000 r/min),当转速超过阈值时,迷宫密封泄漏量明显降低,当转子转速为10 000 r/min时,相对无旋转工况,泄漏量下降了18.5%;润滑油温度升高,黏度降低,密封结构的泄漏量呈近线性增大,当温度为140 °C时,相比温度为40 °C工况,泄漏量上升了58.6%;旋转效应和热效应造成流场变化是影响密封系统泄漏特性的主要因素,结构变形是次要因素.

关键词: 高速齿轮箱轴向迷宫密封旋转效应热效应两相流    
Abstract:

The rotating and thermal effects on sealing performance were analyzed and the calculation model of axial lateral straight-through labyrinth seal was established, in order to explore the sealing mechanism of high-speed gearbox with mixed media of lubricating oil and ideal gas. The influences of structure deformation and flow field on the sealing performance were also studied, which were induced by the rotating and thermal effects. The results reveal that the rotating and thermal effects can reduce the sealing gap. Nevertheless, the thermal-effect-induced expansive deformation exceeded the rotating-effect-induced centrifugal deformation by one order of magnitude. In addition, the rotation speed had a threshold value (4 000 r/min). When the rotor rotation speed exceeded this threshold, the leakage loss of labyrinth seal decreased significantly. Compared with the condition without rotation, the leakage loss decreased 18.5% under the rotation speed of 10 000 r/min. At the same time, the leakage loss increased linearly with the increment of lubricating oil temperature and the decrease of oil viscosity. When the oil temperature was at 140 °C, the leakage loss increased 58.6% in comparison with that at 40 °C. The flow filed caused by rotating and thermal effects is the major factor affecting the leakage performance of gearbox sealing system, while the structure deformation is the secondary factor.

Key words: high-speed gearbox    axial labyrinth seal    rotating effect    thermal effect    two-phase flow
收稿日期: 2019-01-03 出版日期: 2019-09-12
CLC:  U 270.2  
通讯作者: 张开林     E-mail: zhangyutpl@163.com;zhangkailintpl@163.com
作者简介: 张雨(1991—),男,博士生,从事齿轮箱润滑与密封研究. orcid.org/0000-0003-0710-5828. E-mail: zhangyutpl@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张雨
张开林
姚远

引用本文:

张雨,张开林,姚远. 旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1656-1662.

Yu ZHANG,Kai-lin ZHANG,Yuan YAO. Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1656-1662.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.003        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1656

图 1  双边直通式迷宫密封结构
t/ °C υ/(mm2·s?1 t/ °C υ/(mm2·s?1
40 116 120 5.6
80 21.8 140 2.9
100 16.6 ? ?
表 1  不同粘度下润滑油的运动黏度
图 2  润滑油泄漏量与网格数量关系曲线
图 3  不同密封间隙宽度下仿真与试验密封系数对比图
图 4  不同转速和半径下的转子离心变形曲线
t/ °C λ/(°C?1 t/ °C λ/(°C?1
0 10.76 100 11.53
50 11.12 150 11.88
表 2  Q345材料的线膨胀系数
图 5  不同温度和半径下的转子膨胀变形曲线
图 6  密封间隙比与泄漏量比关系曲线图
图 7  转子转速与润滑油泄漏量和泄漏量比的关系曲线图
图 8  温度与润滑油泄漏量和泄漏量比关系曲线图
n/(r·min?1 r1/% r2/% r/%
0 0 0 0
2 000 ?0.13 ?0.52 ?0.65
4 000 ?0.18 ?1.44 ?1.62
6 000 ?0.46 ?3.86 ?4.32
8 000 ?0.76 ?10.81 ?11.57
10 000 ?1.14 ?17.31 ?18.45
表 3  不同转子转速下的润滑油泄漏量
t/ °C r1/% r2/% r/%
40 0 0 0
60 ?6.99 32.63 25.64
80 ?13.80 52.49 38.69
100 ?17.12 63.54 46.42
120 ?20.41 75.55 55.14
140 ?24.66 83.29 58.63
表 4  不同温度下的润滑油泄漏量
1 杜发青, 吉洪湖, 帅海山, 等 齿形几何参数对直通篦齿封严泄漏特性影响的正交实验[J]. 航天动力学报, 2013, 28 (4): 825- 831
DU Fa-qing, JI Hong-hu, SHUAI Hai-shan, et al Orthogonal experiment of effect of fin geometrical parameters on leakage of straight-through labyrinth seals[J]. Journal of Aerospace Power, 2013, 28 (4): 825- 831
2 李军, 吕强, 丰镇平 高低齿迷宫式汽封泄漏流动特性研究[J]. 机械工程学报, 2006, 42 (5): 165- 168
LI Jun, LU Qiang, FENG Zhen-ping Research on the leakage flow characteristics in the stepped labyrinth seal[J]. Chinese Journal of Mechanical Engineering, 2006, 42 (5): 165- 168
doi: 10.3321/j.issn:0577-6686.2006.05.031
3 TONG S K, KYU S C Comparative analysis of the influence of labyrinth seal configuration on leakage behavior[J]. Journal of Mechanical Science and Technology, 2009, 23 (10): 2830- 2838
doi: 10.1007/s12206-009-0733-5
4 LIN Z R, WANG X D, YUAN X, et al Investigation and improvement of the staggered labyrinth seal[J]. Chinese Journal of Mechanical Engineering, 2015, 28 (2): 402- 408
doi: 10.3901/CJME.2015.0106.005
5 TANG H, WANG S J, ZHAO J Effect of fluid-structure interaction on sealed flow filed and leakage rate base on computational fluid dynamics[J]. Journal of Shanghai Jiaotong University, 2015, 20 (3): 326- 330
doi: 10.1007/s12204-015-1631-x
6 LI J, QIU B, FENG Z P Experimental and numerical investigations on the leakage flow characteristics of the labyrinth brush seal[J]. Journal of Engineering for Gas Turbines and Power, 2013, 1547 (1): 164- 172
7 SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS Influence of combined radial location and growth on the leakage performance of a rotating labyrinth gas turbine seal[J]. Journal of Mechanical Science and Technology, 2015, 29 (6): 2535- 2545
doi: 10.1007/s12206-015-0545-8
8 SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS On the choice of initial clearance and prediction of leakage flow rate for a rotating gas turbine seal[J]. Journal of Mechanical Engineering Science, 2016, 230 (10): 1586- 1601
doi: 10.1177/0954406215581692
9 SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS Assessment of analytical predictions for radial growth of rotating labyrinth seals[J]. International Journal of Turbo and Jet-Engines, 2016, 35 (3): 265- 279
10 SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS Rotor dynamic characteristics of rotating labyrinth gas turbine seal with centrifugal growth[J]. Tribology International, 2016, 97 (2): 349- 359
11 SIVAKUMAR S P, SEKHAR A S, PRASAD BVSSS Rotor dynamic characterization of rotating labyrinth gas turbine seals with radial growth: combined centrifugal and thermal effects[J]. International Journal of Mechanical Science, 2017, 123 (4): 1- 19
12 YAHYA D, MUSTAFA C S, AHMET S B Computational fluid dynamics investigation of labyrinth seal leakage performance depending on mushroom-shaped tooth wear[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138 (3): 032503?1- 10
13 陈尧兴, 李志刚, 晏鑫, 等 迷宫齿蘑菇型磨损时密封泄漏特性和转子动力特性系数研究[J]. 西安交通大学学报, 2018, 52 (1): 1- 7
CHEN Yao-xing, LI Zhi-gang, YAN Xin, et al Investigations on the leakage performance and rotor dynamic coefficients of labyrinth seal with mushroom-shaped tooth wear[J]. Journal of Xi’an Jiaotong University, 2018, 52 (1): 1- 7
14 BONDARENKO G A, BAGA V N, BASHLAK I A Flow simulation in a labyrinth seal[J]. Applied Mechanics and Materials, 2014, 630 (9): 234- 239
15 孔晓治, 刘高文, 雷昭, 等 转速对压气机级间篦齿封严影响的实验[J]. 航天动力学报, 2016, 31 (7): 1575- 1582
KONG Xiao-zhi, LIU Gao-wen, LEI Zhao, et al Experiment on influence of rotational speeds on labyrinth seal in compressor stator well[J]. Journal of Aerospace Power, 2016, 31 (7): 1575- 1582
16 李志刚, 李军, 丰镇平 迷宫密封泄漏特性影响因素的研究[J]. 西安交通大学学报, 2010, 44 (3): 16- 20
LI Zhi-gang, LI Jun, FENG Zhen-ping Effects of gap pressure ratio and rotational speed on discharge behavior of labyrinth seal[J]. Journal of Xi’an Jiaotong University, 2010, 44 (3): 16- 20
17 周国宇, 王旭东, 林智荣, 等 高低齿迷宫密封泄漏量实验及计算分析[J]. 工程热物理学报, 2015, 36 (9): 1889- 1893
ZHOU Guo-yu, WANG Xu-dong, LIN Zhi-rong, et al Preliminary analysis to the leakage of the staggered labyrinth seal based on experiment and simulation[J]. Journal of Engineering Thermophysics, 2015, 36 (9): 1889- 1893
[1] 张玙,刘益才. 小型制冷系统两相流致噪声研究进展[J]. 浙江大学学报(工学版), 2021, 55(4): 775-792.
[2] 张井志,陈武铠,周乃香,雷丽,梁福顺. T型微通道内液滴形成过程及长度的实验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 1007-1013.
[3] 黄钰期,陈卓烈,胡军强,李梅,牛昊一. 活塞内冷油腔两相流振荡可视化模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 435-441.
[4] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[5] 李亦健, 吴舒琴, 金滔. 低温浆体电容式液位计的优化及实验[J]. 浙江大学学报(工学版), 2018, 52(5): 966-970.
[6] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[7] 董康, 周昊, 杨玉, 王凌力, 岑可法. 二次风风量对旋流燃烧器气固流动特性的影响[J]. 浙江大学学报(工学版), 2014, 48(12): 2162-2171.
[8] 沈跃良,周昊 ,胡敏 ,杨玉 ,吴剑波 ,岑可法. 静电网格系统在旋流燃烧器流场测量中的应用[J]. J4, 2013, 47(9): 1658-1665.
[9] 李斌, 陈安生, 刘红侠, 温才, 魏岚, 唐金龙. 新器件结构SGOI低场迁移率模型及数值分析[J]. J4, 2013, 47(1): 77-82.
[10] 周昊, 吴剑波, 杨玉, 李亚鹏, 胡善涛, 岑可法. 旋流燃烧器出口气固两相流场的
光学波动法测量研究
[J]. J4, 2012, 46(12): 2189-2193.
[11] 傅理文, 汪劲丰, 程伟平, 向华伟. 方形混凝土桥墩裂缝成因分析及对策[J]. J4, 2010, 44(9): 1738-1745.
[12] 吴学成, 王怀, 浦世亮, 浦兴国, 袁镇福, 陈玲红, 岑可法. 数字共轴全息中颗粒识别与定位[J]. J4, 2010, 44(4): 765-770.
[13] 王勇, 孔令伟, 郭爱国, 柏巍. 气体释放速率对浅层气藏中气水运移的影响[J]. J4, 2010, 44(10): 1883-1889.
[14] 胡桂林, 樊建人. 交指状流场质子交换膜燃料电池的数值分析[J]. J4, 2009, 43(6): 1147-1151.
[15] 严建华, 刘亚纳, 李晓东, 等. 不同气氛下气液两相滑动弧放电降解甲基紫[J]. J4, 2009, 43(5): 931-936.