Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (4): 692-701    DOI: 10.3785/j.issn.1008-973X.2019.04.010
土木工程、海洋工程     
考虑河谷地形影响的多层框架结构地震易损性
黄博1,2(),廖凯龙1,2,赵宇1,2,*(),蒋建群3
1. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
2. 浙江大学 岩土工程研究所,浙江 杭州 310058
3. 浙江大学 水工结构与水环境研究所,浙江 杭州 310058
Seismic fragility analysis of multi-storey frame structure considering effect of valley terrain
Bo HUANG1,2(),Kai-long LIAO1,2,Yu ZHAO1,2,*(),Jian-qun JIANG3
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Institute of Hydraulic Structure and Water Environment, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1422 KB)   HTML
摘要:

针对杭嘉湖地区冲淤河谷地形分布广泛的特殊情况,结合当地土体工程特性和抗震设防区划设置现状,基于动力时程分析以及概率统计方法,给出适用于杭嘉湖地区多层框架结构的地震易损性曲线,对比不考虑地基、均质地基和河谷地基条件下多层框架结构的动力分析结果. 研究土-结动力相互作用以及局部河谷地形对结构动力响应和易损性的影响,考察房屋结构位于河谷不同位置处的差异. 结果表明,土-结动力相互作用对结构的动力分析结果有显著影响,不考虑土-结动力相互作用将低估房屋结构变形,易损性性能水平超越概率偏低,偏差可达7.9%,结果偏于危险;局部河谷地形对地震波独特的聚焦效应会增大结构变形,地震易损性超越概率与均质地基相比增幅可达12.1%,且河谷不同位置处的聚焦效果不同,在选取的地震波输入下表现为房屋结构距河谷中心越近,结构变形越大、地震易损性超越概率越大.

关键词: 地震易损性多层框架结构土-结动力相互作用局部河谷地形聚焦效应    
Abstract:

The seismic fragility curves of multi-storey frame structures suitable for Hangjiahu area were given based on dynamic time history analysis and probability statistics method combining with the local soil engineering characteristics and the fact of seismic fortification zones in view of the special situation that the scouring and silting valley topography is widely distributed in Hangjiahu area. The dynamic analysis results of multi-storey frame structures without considering foundation, homogeneous foundation and River Valley Foundation were compared. Results show that soil-structures dynamic interaction has a significant influence on the dynamic analysis results of structures. The deformation and the exceeding probability of fragility performance level of buildings were underestimated without considering soil-structures dynamic interaction. The deviation can reach 7.9%, which will lead to a dangerous result. The unique focusing effect of local valley topography on seismic waves will increase the structural deformation. The exceeding probability of seismic vulnerability can increase by 12.1% compared with homogeneous foundation, and the focusing effect is different at different locations of the valley. Under the selected seismic wave input, the closer the building structure is to the center of the valley, the greater the structural deformation and the greater the probability of exceeding the seismic fragility are.

Key words: seismic fragility    multi-storey frame structure    soil-structure dynamic interaction    local valley terrain    focusing effect
收稿日期: 2018-06-30 出版日期: 2019-03-28
CLC:  TU 435  
通讯作者: 赵宇     E-mail: cehuangbo@zju.edu.cn;zhao_yu@zju.edu.cn
作者简介: 黄博(1973—),女,副教授,从事土动力学和实验土力学研究. orcid.org/0000-0002-7293-8618. E-mail: cehuangbo@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄博
廖凯龙
赵宇
蒋建群

引用本文:

黄博,廖凯龙,赵宇,蒋建群. 考虑河谷地形影响的多层框架结构地震易损性[J]. 浙江大学学报(工学版), 2019, 53(4): 692-701.

Bo HUANG,Kai-long LIAO,Yu ZHAO,Jian-qun JIANG. Seismic fragility analysis of multi-storey frame structure considering effect of valley terrain. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 692-701.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.010        http://www.zjujournals.com/eng/CN/Y2019/V53/I4/692

图 1  房屋结构尺寸与条基尺寸
土层 ρ/(kg·m?3) E/MPa μ c/kPa φ/(°)
淤泥质土 1 820 149 0.49 5 20
粉质黏土 2 000 329 0.49 8 25
表 1  地基土体参数
图 2  地基模型概化图
图 3  地表中心点加速度时程曲线
地震名称 年份 Ms R/km
EL Centro 1979 6.6 2.5
Chichi 1999 7.6 7.3
Taft 1952 7.4 41.0
Kobe 1995 6.9 15.5
Loma Prieta1 1989 6.9 70.4
Loma Prieta2 1989 6.9 28.6
Loma Prieta3 1989 6.9 35.5
Northridge1 1994 6.7 7.1
Northridge2 1994 6.7 6.2
Whittier Narrows 1987 5.3 4.4
Coalinga 1983 6.0 10.0
Kocaeli 1999 7.4 67.5
Mammoth Lake 1980 4.9 7.5
San Fernando 1971 6.6 12.0
Coyote 1979 5.7 12.6
Nahanni 1985 6.8 6.0
Duzce 1999 7.2 8.2
Cape Mendocino 1992 7.1 9.5
表 2  实际地震记录
图 4  所选18条地震波反应谱
图 5  均质地基模型地面、基底处的加速度时程曲线
图 6  均质地基模型地面、基底的加速度傅里叶谱
图 7  均质地基、河谷地基模型柱底加速度反应谱比
图 8  结构变形曲线
图 9  考虑局部河谷地形的结构地震易损性曲线
图 10  河谷地形影响的超越概率增加量
1 朱健. 结构动力学原理与地震易损性分析[M]. 北京: 科学出版社, 2013.
2 郭迅 汶川大地震震害特点与成因分析[J]. 地震工程与工程振动, 2009, 29 (6): 74- 87
GUO Xun Characteristics and mechanism analysis of the Great Wen Chuan Earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29 (6): 74- 87
3 尚守平, 贺志文, 王海东, 等 上部结构与地基相对刚度比对土-结构体系基频影响试验研究[J]. 地震工程与工程振动, 2008, 28 (05): 94- 101
SHANG Shou-ping, HE Zhi-wen, WANG Hai-dong, et al Experimental investigation on the effect of the relative stiffness ratio between superstructure and ground soil on the fundamental frequency of soil-structure system[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28 (05): 94- 101
4 PANZERA F, LOMBARDO G, MONACO C, et al Seismic site effects observed on sediments and basaltic lavas outcropping in a test site of Catania, Italy[J]. Natural Hazards, 2015, 79 (1): 1- 27
5 TAFAZZOLI N, BAZIAR M H. Evaluation of basin effect on ground motion [C] // 4th International Conference on Geotechnical Earthquake Engineering. Thessaloniki, Greece: Aristotle University of Thessaloniki Greece, 2007: 1323.
6 金峰, 张楚汉 半椭圆形河谷上沉积层地震响应研究[J]. 清华大学学报: 自然科学版, 1993, 33 (05): 23- 30
JIN Feng, ZHANG Chu-han Seismic response of sedimentary layers in semi-oval valley[J]. Journal of Tsinghua University: Science and Technology, 1993, 33 (05): 23- 30
7 尤红兵, 赵凤新, 李方杰 层状场地中任意形状沉积河谷对平面SH波的散射[J]. 防灾减灾工程学报, 2008, 28 (3): 313- 318
YOU Hong-bing, ZHAO Feng-xin, LI Fang-jie Scattering of planar SH waves by arbitrary shaped sediments in a layered field[J]. Journal of Disaster Prevention and Mitigation Engineering, 2008, 28 (3): 313- 318
8 刘晶波, 刘阳冰, 闫秋实, 等 基于性能的方钢管混凝土框架结构地震易损性分析[J]. 土木工程学报, 2010, 43 (02): 39- 47
LIU Jing-bo, LIU Yang-bing, YAN Qiu-shi, et al Performance-based seismic fragility analysis of CFST frame structures[J]. China Civil Engineering Journal, 2010, 43 (02): 39- 47
9 刘阳冰, 刘晶波. 基于性能的组合结构的地震易损性分析[C] // 全国土木工程研究生学术论坛. 北京: 中国土木工程学会, 2008.
LIU Yang-bing, LIU Jing-bo. Seismic fragility analysis of composite structures based on performance [C] // National Civil Engineering Forum for Graduate Students. Beijing: CSCE, 2008.
10 CELIK O C, ELLINGWOOD B R Seismic fragilities for non-ductile reinforced concrete frames: role of aleatoric and epistemic uncertainties[J]. Structural Safety, 2010, 32 (1): 1- 12
11 PARK J, KIM J Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column[J]. Engineering Structures, 2010, 32 (6): 1547- 1555
12 葛立勇 新版《中国地震波参数区划图》简介及对浙江省的影响[J]. 浙江建筑, 2017, 34 (03): 26- 28
GE Li-yong Influence of the brief introduction of the new edition of《Zoning Map of the Seismic Parameters of China》[J]. Zhejiang Construction, 2017, 34 (03): 26- 28
13 施炜, 叶列平, 陆新征, 等 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28 (3): 41- 48
SHI Wei, YE Lie-ping, LU Xin-zheng, et al Study on the collapse-resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28 (3): 41- 48
14 陆新征, 叶列平, 缪志伟. 建筑抗震弹塑性分析[M]. 北京: 中国建筑工业出版社, 2015.
15 高向玲, 张业树, 李杰 基于ABAQUS梁单元的钢筋混凝土框架结构数值模拟[J]. 结构工程师, 2013, 29 (06): 19- 26
GAO Xiang-ling, ZHANG Ye-shu, LI Jie Numerical simulation of a RC frame based on abaqus beam elements[J]. Structural Engineers, 2013, 29 (06): 19- 26
16 张亚旭, 王修信, 庄海洋 土-桩-框架结构非线性相互作用的精细数值模型及其验证[J]. 防灾减灾工程学报, 2010, 30 (5): 558- 566
ZHANG Ya-xu, WANG Xiu-xin, ZHUANG Hai-yang The fine numerical model of soil-pile-frame structure nonlinear interaction and its verification[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30 (5): 558- 566
17 褚浩存 嵌固部位柱钢筋的施工工艺[J]. 建筑工人, 2016, 37 (04): 4- 5
CHU Hao-cun Construction process of reinforced steel bar embedded in site[J]. Construction Workers, 2016, 37 (04): 4- 5
18 庄海洋, 于旭. 土-桩-隔震结构动力相互作用[M]. 北京: 中国建筑工业出版社, 2016.
19 蔡伟忠, 周金龙, 张远芳, 等 嘉兴市软弱地基工程特性及桩基持力层评价[J]. 新疆农业大学学报, 2011, 34 (4): 353- 357
CAI Wei-zhong, ZHOU Jin-long, ZHANG Yuan-fang, et al Evaluation on features of soft foundation engineering andbearing layer of pile in Jiaxing city[J]. Journal of Xinjiang Agricultural University, 2011, 34 (4): 353- 357
20 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010.
21 HUDSON M, IDRISS I M, BEIKAE M. User manual for QUAD4m: a computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base [D]. Berkeley: University of California, 1994.
22 NEJATI H R, AHMADI M, HASHEMOLHOSSEINI H Numerical analysis of ground surface vibration induced by underground train movement[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2012, 29 (5): 1- 9
23 黄宗明, 白绍良, 赖明 结构地震反应时程分析中的阻尼问题评述[J]. 地震工程与工程振动, 1996, (2): 95- 105
HUANG Zong-ming, BAI Shao-liang, LAI Ming Comments on damping in structural seismic response time analysis[J]. Journal of Earthquake Engineering and Engineering Vibration, 1996, (2): 95- 105
24 邹德高, 徐斌, 孔宪京 瑞利阻尼系数确定方法对高土石坝地震反应的影响研究[J]. 岩土力学, 2011, 32 (03): 797- 803
ZOU De-gao, XU Bin, KONG Xian-jing Study of influence of different methods for calculating Rayleigh damping coefficient on high earth-rock dam seismic response[J]. Rock and Soil Mechanics, 2011, 32 (03): 797- 803
25 李哲, 王贡献, 胡勇, 等 改进的瑞利阻尼系数计算方法在岸桥结构地震反应分析中的应用[J]. 华南理工大学学报: 自然科学版, 2015, 43 (06): 103- 109
LI Zhe, WANG Gong-xian, HU Yong, et al Application of improved Rayleigh damping coefficient calculation method in seismic response analysis of shore bridge structure[J]. Journal of South China University of Technology: Science and Technology, 2015, 43 (06): 103- 109
26 李平, 刘红帅, 薄景山, 等 汶川MS8. 0地震河谷地形对汉源县城高烈度异常的影响[J]. 地球物理学报, 2016, 1 (1): 174- 184
LI Ping, LIU Hong-shuai, BO Jing-shan, et al Effects of river valley topography on anomalously high intensity in the Hanyuan town during the Wenchuan[J]. Chinese Journal of Geophysics, 2016, 1 (1): 174- 184
27 杨文采 波动方程的逆散射与迭代线性化反演[J]. 石油物探, 1995, 34 (03): 114- 121
YANG Wen-cai Inverse scattering of wave equations and iterative linearization inversion[J]. Geophysical Prospecting for Petroleum, 1995, 34 (03): 114- 121
28 戚玉亮, 大塚久哲 ABAQUS动力无限元人工边界研究[J]. 岩土力学, 2014, 35 (10): 3007- 3012
QI Yu-liang, HISANORI Otsuka Study of ABAQUS dynamic infinite element artificial boundary[J]. Rock and Soil Mechanics, 2014, 35 (10): 3007- 3012
29 UNGLESS R F. An infinite finite element [D]. Vancouver: University of British Columbia, 1973.
30 阳栋, 王志亮 基于无限元和波场分离法的地震响应数值分析[J]. 同济大学学报: 自然科学版, 2012, 40 (8): 1129- 1134
YANG Dong, WANG Zhi-liang Numerical analysis of seismic response based on infinite element and wave field separation method[J]. Journal of Tongji University: Natural Science, 2012, 40 (8): 1129- 1134
31 ZHAO Guo-chen, XU Long-jun, XIE Li-li On near-fault ground motion characteristics through multi-scale method[J]. Chinese Journal of Geophysics, 2013, 56 (6): 742- 753
32 Applied Technology Council Quantification of building seismic performance factors[J]. California: Federal Emergency Management Agency, 2008,
33 顾斌, 丁政 苏浙沪及邻区深部构造及其与地震活动性的关系[J]. 地震学刊, 1987, (3): 29- 37
GU Bin, DING Zheng Deep structures and their relation to earthquake activity in Suzhizi and neighboring areas[J]. Journal of Seismology, 1987, (3): 29- 37
34 田石柱, 张常明, 林元铮 考虑桩-土-结构相互作用下斜拉桥桥塔地震反应模拟[J]. 工程抗震与加固改造, 2015, 37 (06): 71- 77
TIAN Shi-zhu, ZHANG Chang-ming, LIN Yuan-zheng Seismic response simulation of cable-stayed bridge tower considering pile-soil-structure interaction[J]. Earthquake Resistant Engineering and Retrofitting, 2015, 37 (06): 71- 77
35 CHOI Y, STEWART J P, GRAVES R W Empirical model for basin effects accounts for basin depth and source location[J]. Bulletin of the Seismological Society of America, 2005, 95 (4): 1412- 1427
36 王力, 周叮, 刘伟庆, 等 场地盆地效应的振动台试验[J]. 南京工业大学学报: 自然科学版, 2014, 36 (02): 107- 111
WANG Li, ZHOU Ding, LIU Wei-qing, et al Shaking table test of site basin effect[J]. Journal of Nanjing Tech University: Natural Science Edition, 2014, 36 (02): 107- 111
37 袁晓铭, 李雨润, 孙锐 圆弧状沉积盆地与软土单覆盖层出平面地表运动对比[J]. 地震工程与工程振动, 2002, 22 (4): 16- 21
YUAN Xiao-ming, LI Yu-run, SUN Rui Comparison of out-of-plane surface ground motion between a circular-arc alluvial valley and a single overburden soft layer[J]. Earthquake Engineering and Engineering Vibration, 2002, 22 (4): 16- 21
38 SEMBLAT J F, PARARA E, KHAM M, et al. Site effects: basin geometry vs soil layering [C] // Joint Conference of the 11th International Conference on Soil Dynamics and Earthquake Engineering and the 3rd International Conference on Earthquake Geotechnical Engineering. Berkeley: University of California, 2004.
39 孙柏涛, 张桂欣 汶川8. 0级地震中各类建筑结构地震易损性统计分析[J]. 土木工程学报, 2012, 45 (02): 26- 30
SUN Bo-tao, ZHANG Gui-xin Statistical analysis of the seismic fragility of various types of building structures in WenchuanM8. 0 earthquake[J]. China Civil Engineering Journal, 2012, 45 (02): 26- 30
40 GB50011-2010, 中华人民共和国国家标准建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2008.
41 HAZUS-MH MR1. Multi-hazard loss estimation methodology-earthquake model [S]. Washington D. C. : Department of Homeland Security, FEMA, 2003.
[1] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[2] 苏亮,索靖,宋明亮. 钢筋砼框架结构易损性评估的参数敏感性分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1384-1390.
[3] 王彤,王炎,谢旭,张鹤. 不等高桥墩铁路减隔震桥梁钢阻尼支座地震易损性[J]. 浙江大学学报(工学版), 2014, 48(11): 1909-1916.