Please wait a minute...
浙江大学学报(工学版)
土木工程     
不等高桥墩铁路减隔震桥梁钢阻尼支座地震易损性
王彤1,王炎1,2,谢旭1,张鹤1
1. 浙江大学 建筑工程学院,浙江 杭州 310058; 2. 浙江理工大学 建筑工程学院,浙江 杭州 310018
Seimic fragility of steel damper bearings in isolated  railway bridges with different-height piers
WANG Tong1, WANG Yan1,2, XIE Xu1, ZHANG He1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. College of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, Chin
 全文: PDF(1716 KB)   HTML
摘要:

以设置E型钢阻尼装置的不等高桥墩高速铁路减隔震简支梁桥为对象,建立考虑轨道约束的全桥非线性有限元分析模型,并进行100条地震动作用下的非线性时程分析.从基于性能要求的抗震设计思想出发,采用位移和能量双重破坏准则,提出同时考虑最大变形效应和累积损伤效应两方面效应的钢阻尼支座损伤指标,采用可靠度概率分析方法形成钢阻尼支座在不同损伤状态下的易损性曲线.结果表明,地震作用下不同支座在各损伤状态下的易损性差异明显,对于桥墩高度差异较大的铁路减隔震桥梁,宜根据桥墩刚度的不同进行减隔震设计,对刚度较小的高、中墩处的钢阻尼支座,设计时应留有必要的安全储备.

Abstract:

In this study, isolated high speed railway simply supported  bridges with E-shape steel damper bearings and different-height piers were taken as example.  Nonlinear FEM analysis model of the bridge were established. Nonlinear time-history analyses under 100 earthquake wave records were performed. From the principle of performance-based seismic design, and based on displacement and energy failure criterion, an approach for determining damage indexes of E-shape steel damper bearings both considering maximum deformation effect and accumulative damage effect  was proposed. Through traditional reliability probability analysis method, the fragility curves of bearings under different damage status were constructed. The results show that the seismic fragilities of different bearings under every damage status have significant difference. For isolated railway bridges with significant difference in pier heights, seismic isolation device should be designed according to different pier stiffness. For the design of steel damper bearings on piers with high or medium height, adequate safety margin is necessary.

出版日期: 2014-11-01
:  U 443  
基金资助:

国家自然科学基金资助项目(51108412,51378460)

通讯作者: 谢旭,男,教授,博导     E-mail: xiexu@zju.edu.cn
作者简介: 王彤(1988-),男,博士生,从事桥梁抗震研究. E-mail: wangtong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王彤,王炎,谢旭,张鹤. 不等高桥墩铁路减隔震桥梁钢阻尼支座地震易损性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.001.

WANG Tong, WANG Yan, XIE Xu, ZHANG He. Seimic fragility of steel damper bearings in isolated  railway bridges with different-height piers. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.11.001        http://www.zjujournals.com/eng/CN/Y2014/V48/I11/1909

[1] GB50111-2006.铁路工程抗震设计规范[S]. 北京:中国计划出版社,2006.
GB50111-2006.Code for seismic design of railway engineering [S]. Beijing: China Planning Press, 2006.
[2] 潘晋,吴成亮,仝强,等. E型钢阻尼器数值仿真及试验研究[J]. 振动与冲击,2009,28(7):192195+222.
PAN Jin, WU Cheng-liang, TONG Qiang, et al. Simulation and experimental study on an E-shape steel damper [J]. Journal of Vibration and Shock, 2009, 28(7): 192-195+222.
[3] 洪静. 设置E型钢阻尼装置的连续梁桥抗震性能研究[D]. 南京:南京理工大学,2012.
HONG Jing. Research on seismic performance of continuous girder bridges with E-shape steel damper[ D]. Nanjing: Nanjing University of Science and Technology, 2012.
[4] 张常勇,钟铁毅,季文刚. 铁路连续梁桥横向减隔震支座参数研究[J]. 中国铁道科学,2011,32(4):19-23.
ZHANG Changi-yong, ZHONG Tie-yi, JI Wen-gang. Study of the parameters of transverse seismic isolation bearings of railway continuous beam bridge [J]. China Railway Science, 2011, 32(4): 19-23.
[5] SHINOZUKA M, FENG M Q, LEE J, et al. Statistical analysis of fragility curves [J]. Journal of Engineering Mechanics, 2000, 126(2): 1224-1231.
[6] KARIM K R, YAMAZAKI F. A simplified method of constructing fragility curves for highway bridges [J]. Earthquake Engineering and Structural Dynamics, 2003, 32(10): 1103-1626.
[7] HWANG H, LIU J B, CHIU Y H. Seismic fragility analysis of highway bridges[R]. Memphis: Mid-America Earthquake Center, 2001.
[8] PAN Y, AGRAWAL A K, GHOSN M. Seismic fragility of continuous steel highway bridges in New York State [J]. Journal of Bridge Engineering, 2007, 12(6): 689-699.
[9] 李立峰,吴文朋,黄佳梅,等. 地震作用下中等跨径RC连续梁桥系统易损性研究[J]. 土木工程学报,2012,45(10):152-160.
LI Li-feng, WU Wen-peng, HUANG Jia-mei, et al. Study on system vulnerability of medium span reinforced concrete continuous girder bridges under earthquake excitation [J]. China Civil Engineering Journal, 2012, 45(12): 152-160.
[10] 李立峰,吴文朋,黄佳梅,等. 板式橡胶支座地震易损性分析[J]. 湖南大学学报:自然科学版,2011,38(11):16.
LI Li-feng, WU Wen-peng, HUANG Jia-mei, et al. Reaserch on the seismic vulnerability of laminated rubber bearing[J]. Journal of Hunan University:Natural Science, 2011, 38(11): 16.
[11] JTG/T B02-01-2008.公路桥梁抗震设计细则[S]. 北京:人民交通出版社,2008.
JTG/T B02-01-2008. Guidelines for seismic design of highway bridges[S]. Beijing: China Communications Press, 2008.
[12] 郭磊,李建中,范立础. 大跨度连续梁桥减隔震设计研究[J]. 土木工程学报,2006,39(3):81-85.
GUO Lei, LI Jian-zhong, FAN Li-chu. Research on seismic isolation design for long-span continuous bridges [J]. China Civil Engineering Journal, 2006, 39(3): 81-85.
[13] 范立础,卓卫东. 桥梁延性抗震设计[M]. 北京:人民交通出版社,1999.
[14] USAMI T. Guidelines for seismic and damage control design of steel bridges[M]. Tokyo: Gihodo Shuppan Co. Ltd., 2007.
[15] PARK Y J, ALFREDO H S. Mechanistic seismic damage model for reinforced concrete [J]. Journal of Structural Engineering, 1985, 111(4): 722-739.
[16] XIE X, LIN G, DUAN Y F, et al. Seismic damage of long span steel tower suspension bridge considering strong aftershocks [J]. Earthquake and Structures, 2012: 3(5): 767-781.
[17] HWANG H,刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报,2004,37(6):47-51.
HWANG H, LIU Jing-bo. Seismic fragility analysis of reinforced concrete bridges [J]. China Civil Engineering Journal, 2004, 37(6): 47-51.
[18] TB/T2311-2004.铁路桥梁盆式橡胶支座[S]. 北京:中国计铁道出版社,2004.
TB/T2311-2004. Pot bearings for railway bridge[S]. Beijing: China Railway Publishing House, 2004.
[19] 谢旭,王炎,陈列. 轨道约束对铁路减隔震桥梁地震响应的影响[J]. 铁道学报:2012, 34(6): 75-82.
XIE Xu, WANG Yan, CHEN Lie. Effect of railway restraints on seismic responses of cushioning railway bridges[J]. Journal of the China Railway Society, 2012, 34(6): 75-82.
[20] SAKAI J, KAWASHIMA K, SHOJI M. A stress-strain model for unloading and reloading of concrete confined by tie reinforcement [J]. Journal of Structural Mechanics and Earthquake Engineering,JSCE, 2000, 654/I-52: 297-316.
[21] SAKAI J, KAWASHIMA K. Modification of the Giuffre, Menegotto and Pinto model for unloading and reloading paths with small strain variations [J]. Journal of Structural Mechanics and Earthquake Engineering,JSCE, 2003, 738/I-64: 159-169.
[22] Federal emergency management agency. HAZUS99 user’s manual [M]. Washington, D. C. : Federal Emergency Management Agency, 1999.

[1] 陈冲, 袁行飞. 钢绞线截面应力精细化分析[J]. 浙江大学学报(工学版), 2017, 51(5): 841-846.
[2] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[3] 王震,王景全,戚家南. 钢管混凝土组合桥墩变形能力计算模型[J]. 浙江大学学报(工学版), 2016, 50(5): 864-870.
[4] 张婷婷,谢旭,潘骁宇. 考虑断丝影响的平行钢丝索拉伸力学特性[J]. 浙江大学学报(工学版), 2016, 50(5): 841-847.
[5] 张俊峰, 戴小松, 邹维列, 徐顺平, 李子优. 水泥改性固化脱水淤泥路用性能试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2165-2171.
[6] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[7] 王岚,陈刚,邢永明, 胡江三. 沥青混合料变形特性[J]. 浙江大学学报(工学版), 2015, 49(9): 1805-1811.
[8] 胡平川, 周建, 温晓贵, 陈宇翔, 李一雯. 电渗-堆载联合气压劈裂的室内模型试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1434-1440.
[9] 王彤, 谢旭, 唐站站, 沈赤. 考虑复杂应变历史的钢材修正双曲面滞回模型[J]. 浙江大学学报(工学版), 2015, 49(7): 1305-1312.
[10] 潘骁宇,谢旭,李晓章,孙文智,朱汉华. 锈蚀高强度钢丝的力学性能与评级方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1917-1924.
[11] 陶燕丽,周建,龚晓南. 电极材料对电渗过程作用机理的试验研究[J]. 浙江大学学报(工学版), 2014, 48(9): 1618-1623.
[12] 黄博,李玲,凌道盛,陈星耀. 附加衰减模式及其对场地地震响应影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1170-1179.
[13] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074.
[14] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117.
[15] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.