土木工程、海洋工程 |
|
|
|
|
横桥向地震作用对钢拱桥地震损伤发展的影响 |
诸葛翰卿1( ),谢旭1,*( ),廖燕华1,唐站站2 |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 扬州大学 建筑科学与工程学院,江苏 扬州 225127 |
|
Effect of transverse earthquake action on development of seismic damage of steel arch bridges |
Han-qing ZHUGE1( ),Xu XIE1,*( ),Yan-hua LIAO1,Zhan-zhan TANG2 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China |
引用本文:
诸葛翰卿,谢旭,廖燕华,唐站站. 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 702-712.
Han-qing ZHUGE,Xu XIE,Yan-hua LIAO,Zhan-zhan TANG. Effect of transverse earthquake action on development of seismic damage of steel arch bridges. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 702-712.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.011
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I4/702
|
1 |
KAWASHIMA K, UNJOH S The damage of highway bridges in the 1995 Hyogo-Ken Nanbu earthquake and its impact on Japanese seismic design[J]. Journal of Earthquake Engineering, 1997, 1 (3): 505- 541
|
2 |
USAMI T. Guidelines for seismic and damage control design of steel arch bridges [M]. Tokyo: Gihodo Shuppan Co. Ltd., 2007.
|
3 |
GAO S, USAMI T, GE H Ductility evaluation of steel bridge piers with pipe-sections[J]. Journal of Engineering Mechanics, 1998, 124 (3): 260- 267
doi: 10.1061/(ASCE)0733-9399(1998)124:3(260)
|
4 |
USAMI T, GE H Cyclic behavior of thin-walled steel structures: numerical analysis[J]. Thin-Walled Structure, 1998, 32 (1-3): 41- 80
doi: 10.1016/S0263-8231(98)00027-5
|
5 |
USAMI T, GE H, GAO S Stiffened steel box columns. Part 2: ductility evaluation[J]. Earthquake Engineering and Structural Dynamics, 2000, 29 (11): 1707- 1722
|
6 |
WATANABE E, SUGIURA K, OYAWA W O Effects of multi-directional displacement paths on the cyclic behavior of rectangular hollow steel column[J]. Journal of Structural Engineering and Earthquake Engineering, 2000, 17 (1): 79- 94
|
7 |
DANG J, NAKAMURA T, AOKI T, et al Bi-directional loading hybrid test of square section steel piers[J]. Journal of Structural Engineering, 2010, 56A: 367- 380
|
8 |
GOTO Y, JIANG K, OBATA M Stability and ductility of thin-walled circular steel columns under cyclic bidirectional loading[J]. Journal of Structural Engineering, 2006, 132 (10): 1621- 1631
doi: 10.1061/(ASCE)0733-9445(2006)132:10(1621)
|
9 |
GOTO Y, MURAKI K, OBATA M Ultimate state of thin-walled circular steel columns under bidirectional seismic accelerations[J]. Journal of Structural Engineering, 2009, 135 (12): 1481- 1490
doi: 10.1061/(ASCE)ST.1943-541X.0000076
|
10 |
GOTO Y, JIANG K, OBATA M Hysteretic behavior of thin-walled stiffened rectangular steel columns under cyclic bi-axial loading[J]. Journal of Japan Society of Civil Engineers, 2007, 63 (1): 122- 141
|
11 |
GOTO Y, KOYAMA R, FUJII Y, et al Ultimate state of thin-walled stiffened rectangular steel columns under bi-directional seismic excitations[J]. Journal of Japan Society of Civil Engineers, 2009, 65 (1): 61- 80
|
12 |
NONAKA T, ALI A Dynamic response of half-through steel arch bridge using fiber model[J]. Journal of Bridge Engineering, 2001, 6 (6): 482- 488
doi: 10.1061/(ASCE)1084-0702(2001)6:6(482)
|
13 |
USAMI T, LU Z, GE H, et al Seismic performance evaluation of steel arch bridges against major earthquakes. Part 1: dynamic analysis approach[J]. Earthquake Engineering and Structural Dynamics, 2004, 33 (14): 1337- 1354
doi: 10.1002/(ISSN)1096-9845
|
14 |
LU Z, USAMI T, GE H, Seismic performance evaluation of steel arch bridges against major earthquakes Part 2: simplified verification procedure[J]. Earthquake Engineering and Structural Dynamics, 2010, 33 (14): 1355- 1372
|
15 |
CETINKAYA O T, NAKAMUR S, TAKAHASHI K Expansion of a static analysis-based out-of-plane maximum inelastic seismic response estimation method for steel arch bridges to in-plane response estimation[J]. Engineering Structures, 2009, 31 (9): 2209- 2212
doi: 10.1016/j.engstruct.2009.02.045
|
16 |
谢旭, 唐站站, 胡欣科, 等 纤维模型在钢拱桥抗震设计中的适用性研究[J]. 中国公路学报, 2015, 28 (2): 33- 42 XIE Xu, TANG Zhan-zhan, HU Xin-ke, et al Study on application of fiber model In seismic design for steel arch bridge[J]. China Journal of Highway and Transport, 2015, 28 (2): 33- 42
doi: 10.3969/j.issn.1001-7372.2015.02.005
|
17 |
JTG D64-2015, 公路钢结构桥梁设计规范[S]. 北京: 人民交通出版社, 2015.
|
18 |
SHEN C, MIZUNO E, USAMI T A generalized two-surface model for structural steels under cyclic loading[J]. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 1993, 471 (I-2): 23- 33
|
19 |
SHEN C, MAMAGHANI I, MIZUNO E, et al Cyclic behavior of structural steel, II: theory[J]. Journal of Engineering Mechanics, ASCE, 1995, 121 (11): 1165- 1172
doi: 10.1061/(ASCE)0733-9399(1995)121:11(1165)
|
20 |
王彤. 桥梁结构钢材滞回本构模型改进及其应用研究[D]. 杭州: 浙江大学, 2016. WANG Tong. Improvement of the hysteresis constitutive model of bridge structure steel and its application [D]. Hangzhou: Zhejiang University, 2016.
|
21 |
CHEN W, DUAN L. Bridge engineering handbook: Seismic design[M]. Boca Raton: CRC Press, 2014.
|
22 |
日本道路协会. 日本道路桥示方书(抗震设计篇)[S]. 东京: 丸善出版株式会社, 2017.
|
23 |
CJJ 166-2011, 城市桥梁抗震设计规范[S]. 北京: 中国建筑工业出版社, 2011.
|
24 |
GE H, TSUMURA Y Experimental and analytical study on the evaluation of ductile crack initiation in steel bridge piers[J]. Journal of Structural Engineering, 2004, 50A: 1427- 1436
|
25 |
GE H, LUO X A seismic performance evaluation method for steel structures against local buckling and extra-low cycle fatigue[J]. Journal of Earthquake and Tsunami, 2011, 5 (2): 83- 99
doi: 10.1142/S1793431111001005
|
26 |
GE H, KANG L Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading[J]. Engineering Structures, 2014, 59: 809- 820
doi: 10.1016/j.engstruct.2013.12.006
|
27 |
TATEISHI K, HANJI T Low cycle fatigue strength of butt-welded steel joint by means of new testing system with image technique[J]. International Journal of Fatigue, 2004, 26 (12): 1349- 1356
doi: 10.1016/j.ijfatigue.2004.03.016
|
28 |
TATEISHI K, HANJI T, MINAMI K A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29 (5): 887- 896
doi: 10.1016/j.ijfatigue.2006.08.001
|
29 |
KANVINDE A, DEIERLEIN G Void growth model and stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132 (12): 1907- 1918
doi: 10.1061/(ASCE)0733-9445(2006)132:12(1907)
|
30 |
KANVINDE A, DEIERLEIN G Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133 (6): 701- 712
doi: 10.1061/(ASCE)0733-9399(2007)133:6(701)
|
31 |
ZHOU H, WANG Y, SHI Y, et al Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013, 48 (2): 90- 100
|
32 |
廖燕华. 钢桥焊接节点超低周疲劳性能与断裂机理研究[D]. 杭州: 浙江大学, 2018. LIAO Yan-hua. Research on ultra low cycle fatigue properties and fracture mechanism of steel bridge welded joint [D]. Hangzhou: Zhejiang University, 2018.
|
33 |
LIAO F, WANG W, CHEN Y Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42 (2): 153- 174
doi: 10.12989/sem.2012.42.2.153
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|