Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2076-2084    DOI: 10.3785/j.issn.1008-973X.2019.11.004
机械工程     
蒸汽发生器致畸变入流对核主泵流动性能的影响
王悦荟1(),刘聪1,王鹏飞2,许忠斌1,*(),阮晓东3,付新3
1. 浙江大学 能源工程学院,化工机械研究所,浙江 杭州 310027
2. 浙江大学城市学院,浙江 杭州 310015
3. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Influence of distorted inflow caused by steam generator on flow properties of reactor coolant pump
Yue-hui WANG1(),Cong LIU1,Peng-fei WANG2,Zhong-bin XU1,*(),Xiao-dong RUAN3,Xin FU3
1. Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Zhejiang University City College, Hangzhou 310015, China
3. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2298 KB)   HTML
摘要:

为了探究由蒸汽发生器(SG)引起的畸变入流对核主泵(RCP)流动性能的影响,采用计算流体力学方法,建立核主泵与下封头的联合计算模型;利用多参考坐标系模型和滑移交界面技术,开展运行工况下的全三维稳态和瞬态数值模拟;采用入流畸变度和平均偏流角公式定量表征畸变入流的流场速度分布,通过正则化螺旋度法捕捉核主泵叶轮的涡流流动特征. 研究结果表明:与均匀入流相比,畸变入流复杂化了核主泵进口流场,导致核主泵的湍动能和湍耗散增大,降低了主泵的水力效率;在泵的进口流场形成了明显的非对称分布的涡核区域,引起叶轮各流道流态产生差异,造成叶轮内部压力和速度分布不均;导致各流道流量分配不均,加剧叶轮受载波动;降低其运行的稳定性和安全性.

关键词: 核主泵蒸汽发生器畸变入流湍动能计算流体力学(CFD)    
Abstract:

A united model for the reactor coolant pump (RCP) and the channel head was generated by using the method of computational fluid dynamic, in order to analyze the influence of the distorted inflow caused by the steam generator (SG) on the flow property of RCP. Three-dimensional steady and transient numerical simulations in normal operating conditions were performed by using multiple frames of reference and sliding interface technology. The velocity distribution of distorted inflow was quantitatively characterized by inflow distortion degree and mean drift angle, and the regularization helicity method was used to capture the flow characteristics of vortex core for the impeller of RCP. Results show that with the comparison of uniform inflow, the inflow field of the RCP is complicated by the distorted inflow, and the turbulent kinetic energy and turbulent eddy dissipation are increased while the hydraulic efficiency of the RCP is decreased. Obvious asymmetric vortex core regions form in the RCP inlet, causing differences between the flow patterns of the impeller flow channels, and then causing the non-uniform distribution of the pressure and velocity within the impeller. Furthermore, due to the distorted inflow, the flow distribution of each flow channel is uneven, increasing the load fluctuation. The distorted inflow has an adverse effect on the RCP, reducing the stability and safety of the operation of RCP.

Key words: reactor coolant pump    steam generator    distorted inflow    turbulent kinetic energy    computational fluid dynamic (CFD)
收稿日期: 2018-09-11 出版日期: 2019-11-21
CLC:  TL 353  
基金资助: 国家“973”重点基础研究发展规划资助项目(2015CB057301);浙江省自然科学基金资助项目(LQ18E060002)
通讯作者: 许忠斌     E-mail: wangyuehui@zju.edu.cn;xuzhongbin@zju.edu.cn
作者简介: 王悦荟(1992—),女,博士生,从事微流体及流体机械研究. orcid.org/0000-0003-0956-8551. E-mail: wangyuehui@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王悦荟
刘聪
王鹏飞
许忠斌
阮晓东
付新

引用本文:

王悦荟,刘聪,王鹏飞,许忠斌,阮晓东,付新. 蒸汽发生器致畸变入流对核主泵流动性能的影响[J]. 浙江大学学报(工学版), 2019, 53(11): 2076-2084.

Yue-hui WANG,Cong LIU,Peng-fei WANG,Zhong-bin XU,Xiao-dong RUAN,Xin FU. Influence of distorted inflow caused by steam generator on flow properties of reactor coolant pump. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2076-2084.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.004        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2076

图 1  核主泵与蒸汽发生器下封头的位置关系图
图 2  下封头与核主泵的联合建模几何模型图
图 3  下封头与核主泵联合模型网格划分图
图 4  下封头与核主泵联合模型的网格无关性验证
设计参数 数值
流量/(m3?h?1) 17 886
扬程/m >111.3
同步转速/(r·min?1) 1 800
设计压力/MPa 17.2
设计温度/K 616
比转速 428
表 1  核主泵叶轮几何参数
图 5  核主泵扬程测试试验台原理图
图 6  核主泵体积流量-扬程的模拟和实验数据对比图
图 7  核主泵入口处不同剖面的位置示意图
图 8  入流畸变度和平均偏流角的变化规律
图 9  均匀入流下核主泵叶轮进口流场的正则化螺旋度分布图
图 10  畸变入流下核主泵叶轮进口流场正则化螺旋度分布图
图 11  核主泵叶轮叶片压力对比图
图 12  核主泵叶轮叶片速度对比图
图 13  核主泵整体流线图
图 14  核主泵叶片与封头位置关系图
图 15  核主泵叶轮各流道体积流量分配图
图 16  核主泵湍耗散对比图
图 17  核主泵湍动能对比图
1 蔡龙, 张丽平 浅谈压水堆核电站主泵[J]. 水泵技术, 2007, (4): 1- 5
CAI Long, ZHANG Li-ping Discussion on the main pump of PWR nuclear power plant[J]. Pump Technology, 2007, (4): 1- 5
2 张芷模, 刘世辉, 郭鹏 AP1000核主泵叶轮典型质量问题及监造预防措施[J]. 水泵技术, 2016, (3): 31- 36
ZHANG Zhi-mo, LIU Shi-hui, GUO Peng Typical quality problems and preventive measures for AP1000 nuclear main pump impeller[J]. Pump Technology, 2016, (3): 31- 36
3 仇宝云, 林海江, 黄季艳, 等 大型立式轴流泵叶片进口流场及其对水泵影响研究[J]. 机械工程学报, 2005, 41 (4): 28- 34
QIU Bao-yun, LIN Hai-jiang, HUANG Ji-yan, et al Study on flow field in blade inlet of large vertical axial-flow pump and its influence on pump[J]. Chinese Journal of Mechanical Engineering, 2005, 41 (4): 28- 34
doi: 10.3321/j.issn:0577-6686.2005.04.006
4 颜禹, 陆晓峰, 朱晓磊 进口弯管及前置扰流子对离心泵性能影响[J]. 农业工程学报, 2013, (20): 74- 81
YAN Yu, LU Xiao-feng, ZHU Xiao-lei Effect of import bend and forward turbolator on performance of centrifugal pump[J]. Trasactions of the Chinese Society of Agricaltural Engineering, 2013, (20): 74- 81
doi: 10.3969/j.issn.1002-6819.2013.20.011
5 DUAN X, MAO G, YAN J, et al Study on the characteristic of self-excited cavitation oscillation in pump-piping system[J]. Advanced Materials Research, 2011, 268–270: 148- 153
doi: 10.4028/www.scientific.net/AMR.268-270.148
6 黄伟, 张文其, 陶文铨, 等. 蒸汽发生器下封头/主泵连接处流动特性试验研究[J]. 核动力工程, 2002, 23(增1): 38-42.
HUANG Wei, ZHANG Wen-qi, TAO Wen-shuang, et al. Flow characteristics experimental study within connection between steam generator channel head and pump suction[J]. Nuclear Power Engineering, 2002, 23(suppl.1): 38-42.
7 夏栓, 冯斌, 张海军 AP1000核岛主泵流场数值模拟[J]. 核技术, 2013, 36 (4): 101- 107
XIA Shuan, FENG Bin, ZHANG Hai-jun Simulation of AP1000 reactor coolant pump flow field CFD[J]. Nuclear Techniques, 2013, 36 (4): 101- 107
8 WANG Y, WANG P, TAN X, et al Research on the non-uniform inflow characteristics of the canned nuclear coolant pump[J]. Annals of Nuclear Energy, 2018, 115: 423- 429
doi: 10.1016/j.anucene.2018.02.007
9 侯向陶, 王鹏飞, 许忠斌, 等 蒸汽发生器下封头对核主泵入口流场影响[J]. 排灌机械工程学报, 2016, 34 (4): 277- 282
HOU Xiang-tao, WANG Peng-fei, XU Zhong-bin, et al Influence of steam generator channel head on reactor coolant pump inflow field[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34 (4): 277- 282
doi: 10.3969/j.issn.1674-8530.15.0207
10 CHENG H, LI H, YIN J, et al. Investigation of the distortion suction flow on the performance of the canned nuclear coolant pump [C]// ISFMFE - 6th International Symposium on Fluid Machinery and Fluid Engineering. Wuhan: IET Conference Publications, 2014: 166-171.
11 姜茂华, 邹志超, 王鹏飞, 等 基于额定参数的核主泵惰转工况计算模型[J]. 原子能科学技术, 2014, 48 (8): 1435- 1439
JIANG Mao-hua, ZOU Zhi-chao, WANG Peng-fei, et al Coast-down model based on rated parameters of reactor coolant pump[J]. Atomic Energy Science and Technology, 2014, 48 (8): 1435- 1439
doi: 10.7538/yzk.2014.48.08.1435
12 马腾跃, 王鹏飞, 许忠斌, 等 蒸汽发生器换热管流量分配及其对核主泵入口流场的影响[J]. 核动力工程, 2018, 39 (4): 58- 62
MA Teng-yue, WANG Peng-fei, XU Zhong-bin, et al Flow distribution of heat exchanger tubes in a steam generator and its effect on flow field at entrance of reactor coolant pump[J]. Nuclear Power Engineering, 2018, 39 (4): 58- 62
13 SCHULZ T L Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236 (suppl.14–16): 1547- 1557
14 邴浩, 曹树良, 王玉川 湍流模型对混流泵性能预测的影响[J]. 农业机械学报, 2013, 44 (11): 42- 47
BING Hao, CAO Shu-liang, WANG Yu-chuan Influence of turbulence model on performance prediction of mixed-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (11): 42- 47
doi: 10.6041/j.issn.1000-1298.2013.11.008
15 杨从新, 高强, 黎义斌, 等 不同湍流模型在混流泵数值模拟中的应用与评价[J]. 兰州理工大学学报, 2014, 40 (5): 51- 55
YANG Cong-xin, GAO Qiang, LI Yi-bin, et al Application of different turbulence models in numerical simulation of mixed-flow pump and its evaluation[J]. Journal of Lanzhou University of Technology, 2014, 40 (5): 51- 55
doi: 10.11662/j.issn.1673-5196.2014.05.012
16 LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence [M]. London: Academic Press, 1972: 90-110.
17 WANG L Q, YIN J L, JIAO L, et al Numerical investigation on the " S” characteristics of a reduced pump turbine model[J]. Science China Technological Sciences, 2011, 54 (5): 1259- 1266
doi: 10.1007/s11431-011-4295-2
18 郭素娜, 孙立军, 方艳, 等 导流件和叶轮强作用涡轮流量计的CFD仿真方法[J]. 化工自动化及仪表, 2013, 40 (10): 1276- 1280
GUO Su-na, SUN Li-jun, FANG Yan, et al CFD simulation method for turbine flowmeter with strong action from guide vane and impellor[J]. Chemical Automation and Instrument, 2013, 40 (10): 1276- 1280
doi: 10.3969/j.issn.1000-3932.2013.10.019
19 GONZA?LEZ J, SANTOLARIA C Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of Fluids Engineering, 2006, 128 (5): 937- 946
doi: 10.1115/1.2234782
20 苏宋洲, 王鹏飞, 许忠斌, 等 核主泵启动过程压力脉动和径向力研究[J]. 核动力工程, 2017, (3): 114- 118
SU Song-zhou, WANG Peng-fei, XU Zhong-bin, et al Study on pressure fluctuation and radial force during startup of reactor coolant pump[J]. Nuclear Power Engineering, 2017, (3): 114- 118
21 苏宋洲, 王鹏飞, 许忠斌, 等 核主泵升速过程最高转速设定方法研究[J]. 核动力工程, 2017, 38 (5): 101- 105
SU Song-zhou, WANG Peng-fei, XU Zhong-bin, et al Study on maximum speed setting standard during speed up process of reactor coolant pump[J]. Nuclear Power Engineering, 2017, 38 (5): 101- 105
22 朱红耕, 袁寿其, 严登丰, 等 大型泵站进水流道技术改造优选设计[J]. 水力发电学报, 2006, (2): 51- 55
ZHU Hong-geng, YUAN Shou-qi, YAN Deng-feng, et al Numerical simulation and experimental study on bell-shaped suction box under non-symmetric inflow conditions[J]. Journal of Hydroelectric Engineering, 2006, (2): 51- 55
doi: 10.3969/j.issn.1003-1243.2006.02.011
23 李彦军, 颜红勤, 严登丰, 等 非对称入流工况下钟形进水流道数值模拟试验研究[J]. 中国农村水利水电, 2008, 2 (2): 70- 73
LI Yan-jun, YAN Hong-qin, YAN Deng-feng, et al Numerical simulation and experimental study on bell-shaped suction box under non-symmetric inflow conditions[J]. China Rural Water and Hydropower, 2008, 2 (2): 70- 73
24 DEGANI D, SEGINER A, LEVY Y Graphical visualization of vortical flows by means of helicity[J]. AIAA Journal, 1990, 28 (8): 1347- 1352
doi: 10.2514/3.25224
[1] 高用祥,洪都,成有为,王丽军,李希. 连续三相喷射环流反应器的实验和数值模拟[J]. 浙江大学学报(工学版), 2019, 53(5): 997-1005.
[2] 陆燕宁,章洪涛,许岩韦,朱燕群,万凯迪,邵哲如,王智化. 烟气再循环对生物质炉排炉燃烧影响的数值模拟[J]. 浙江大学学报(工学版), 2019, 53(10): 1898-1906.
[3] 陈伟, 秦仙蓉, 杨志刚. 塔式起重机塔身和起重臂的风载荷特征分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2262-2270.
[4] 胡友瑞,刘彦,汪洋,刘建忠,周俊虎,胡巍,李洪伟. 高湿氢氧喷注器数值分析与正交设计[J]. 浙江大学学报(工学版), 2015, 49(12): 2403-2409.
[5] 姚华,盛德仁,陈坚红,李蔚,洪荣华. 重力热管蒸汽发生器热力学分析[J]. J4, 2012, 46(9): 1678-1684.
[6] 孙婧元, 楼佳明, 黄正梁, 王靖岱, 蒋斌波, 阳永荣. 液体雾化效果的检测及流体力学模拟[J]. J4, 2012, 46(2): 218-225.
[7] 李强, 刘淑莲, 于桂昌, 潘晓弘, 郑水英. 非线性转子-轴承耦合系统润滑及稳定性分析[J]. J4, 2012, 46(10): 1729-1736.
[8] 周胤,俞亚南,段园煜. 金属压型板屋顶通风层隔热的数值模拟[J]. J4, 2011, 45(1): 112-117.