Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1729-1736    DOI: 10.3785/j.issn.1008-973X.2012.10.001
机械与能源工程     
非线性转子-轴承耦合系统润滑及稳定性分析
李强1, 刘淑莲3, 于桂昌1, 潘晓弘2, 郑水英1
1. 浙江大学 化工机械研究所,浙江 杭州 310027;2. 浙江大学 现代制造工程研究所,浙江 杭州 310027;
3. 浙江科技学院 机械与汽车工程学院,浙江 杭州 310023
Lubrication and stability analysis of nonlinear rotor-bearing system
LI Qiang1, LIU Shu-lian3, YU Gui-chang1, PAN Xiao-hong2, ZHENG Shui-ying1
1. Institute of Chemical Machinery, Zhejiang University, Hangzhou 310027, China; 2. Institute of Modern Manufacture
Engineering, Zhejiang University, Hangzhou 310027, China; 3. Department of Electro-mechanical Engineering,
Zhejiang University of Science and Technology, Hangzhou 310023, China
 全文: PDF  HTML
摘要:

为了分析滑动轴承与转子耦合系统的非线性动力学特性,采用全新的变流域流场计算的结构化动网格技术对滑动轴承的瞬态流场进行非稳态计算,提出基于计算流体力学(CFD)的润滑流场与转子动力学之间的弱耦合计算方法,形成转子与滑动轴承的流固耦合计算.讨论不同进油方式与进油压力对滑动轴承润滑流场的影响.数值计算表明,轴颈的涡动中心不仅决定于轴颈的转速和静载荷,而且随涡动幅值或动载荷的增大而升高;随着轴承长径比增大或间隙比减小,轴颈涡动中心上浮,易使转子-轴承系统失稳.

Abstract:

The transient oil flow field of journal bearing was calculated by using a new mesh movement approach for variable flow calculation based on structured grid in order to reveal the nonlinear dynamic behaviors of rotor-bearing coupling system. A quasi-coupling calculation method of transient fluid dynamics of oil film in journal bearing and rotor dynamics based on computational fluid dynamics (CFD) was proposed to realize the fluid-structure coupling calculation of rotor and journal bearing. The influences of oil inlet pattern and pressure on flow field of journal bearing were analyzed. The calculation results indicate that the whirling center of the journal relates not only to the rotation speed and static load but also to the vibration amplitude or dynamic load. When increasing the aspect ration or decreasing the clearance ration of journal bearing, the whirling center of the journal is floated upward, which in lead to the instability of rotor-bearing system.

出版日期: 2012-10-01
:  TH 113  
基金资助:

国家“863”高技术研究发展计划资助项目(2009AA04Z413);浙江省自然科学基金资助项目(Y1110109).

通讯作者: 郑水英,女,教授.     E-mail: zhengshuiying@zju.edu.cn
作者简介: 李强(1984—),男,博士生,从事转子动力学、振动测试、故障诊断研究.E-mail: liqiangsydx@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李强, 刘淑莲, 于桂昌, 潘晓弘, 郑水英. 非线性转子-轴承耦合系统润滑及稳定性分析[J]. J4, 2012, 46(10): 1729-1736.

LI Qiang, LIU Shu-lian, YU Gui-chang, PAN Xiao-hong, ZHENG Shui-ying. Lubrication and stability analysis of nonlinear rotor-bearing system. J4, 2012, 46(10): 1729-1736.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.10.001        http://www.zjujournals.com/eng/CN/Y2012/V46/I10/1729

[1] 陈予恕,孟泉.非线性转子轴承系统的分叉[J].振动工程学报,1996,9(3): 266-275.
CHEN Yushu, MENG Quan. Bifurcations of a nonlinear rotorbearing system [J]. Journal of Vibration Engineering, 1996,9(3): 266-275.
[2] 闻邦椿,武新华,丁千,等.故障旋转机械非线性动力学的理论与试验[M].北京:科学出版社,2004:  1-340.
[3] 刘淑莲,郑水英,潘晓弘.通过附加轴承载荷在线消除油膜振荡故障[J].振动工程学报,2005,18(4): 432-437.
LIU Shulian, ZHENG Shuiying, PAN Xiaohong. Elimination of oil whip online by additional bearing static load [J].Journal of Vibration Engineering, 2005,18(4): 432-437.
[4] EARLES L L,PALAZZOLO A B,ARMENTROUT R W.A finite element approach to pad flexibility effects in tilt pad journal bearing parts I and II [J].Journal of Tribology,1990,112(2): 169-182.
[5] 袁惠群,吴英祥,李东,等.滑动轴承转子定子系统耦合故障的非线性动力学特性[J].东北大学学报:自然科学版,2006,27(5): 520-523.
YUAN Huiqun, WU Yingxiang, LI Dong, et al. Nonlinear dynamic behavior of coupling rubbing faults in sliding bearingrotorstator system [J].Journal of Northeastern University: Natural Science,2006,27(5): 520-523.
[6] 孟志强,徐华,朱均.基于Poincare变换的滑动轴承非线性油膜力数据库方法[J].摩擦学报,2001,21(3): 223-227.
MENG Zhiqiang, XU Hua, ZHU Jun. A database method of nonlinear oil film force based on poincare transformation [J].Tribology,2001,21(3): 223-227.
[7] 焦映厚,李明章,陈照波.不同油膜力模型下转子圆柱轴承系统的动力学分析[J].哈尔滨工业大学学报,2007,39(1): 46-50.
JIAO Yinghou, LI Mingzhang, CHEN Zhaobo. Dynamic analysis of rotorcylindrical bearing system with different oil film force models [J].Journal of Harbin Institute of Technology,2007,39(1): 46-50.
[8] TUCKER P G, KEOGH P S. On the dynamic thermal state in a hydrodynamic bearing with a whirling journal using CFD techniques [J].Journal of Tribology, 1996, 118(2): 356-363.
[9] GUO Z L, HIRANO T, KIRK R G. Application of CFD analysis for rotating machinery. Part I: hydrodynamic, hydrostatic bearings and squeeze film damper [J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 445-451.
[10] GERTZOS K P, NIKOLAKOPOULOS P G, PAPADOPOULOS C A. CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant [J]. Tribology International, 2008, 41(12): 1190-1204.
[11] SINGHAL A K, ATHAVALE M M, LI H Y, et al. Mathematical basis and validation of the full cavitation model [J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[12] JAKOBSSON B, FLOBERG L. The finite journal bearing considering vaporization [J]. Chalmers Tekniska Hegskolas Handlingar, 1957, 190(10): 1-116.
[13] 李强,于桂昌,刘淑莲,等.考虑空穴效应的滑动轴承CFD分析[J].工程热物理学报,2010,31(增刊): 221-224.
LI Qiang, YU Guichang, LIU Shulian, et al. Application of CFD analysis for journal bearing considering cavitation effects [J]. Journal of Engineering Thermophysics,2010,31(supplement): 221-224.
[14] 刘淑莲.转子轴承系统非线性特性研究及油膜振荡的在线消除[D].杭州:浙江大学,2004: 1-114.
LIU Shulian. Research on nonlinear dynamics of rotorbearing system and online elimination of the oil film whip [D]. Hangzhou: Zhejiang University, 2004: 1-114.
[15] 刘淑莲,郑水英,汪希萱.被动式电磁阻尼器在线消除油膜振荡研究[J].浙江大学学报:工学版,2005,39(2): 238-241.
LIU Shulian, ZHENG Shuiying, WANG Xixuan. Online elimination of oil whip by passive electromagnetic damper [J]. Journal of Zhejiang University: Engineering Science,2005, 39(2): 238-241.
[16] 李强,刘淑莲,郑水英.计入JFO边界条件的滑动轴承性能分析[J].机械强度,2010,32(2): 270-274.
LI Qiang, LIU Shulian, ZHENG Shuiying. Analysis of the performance of journal bearing with JFO boundary condition [J]. Journal of Mechanical Strength,2010,32(2): 270-274.
[17] 苏荭.基于质量守恒边界条件的油膜空穴研究[D].上海:上海大学,2003: 1-34.
SU Hong. Study of film cavitation with massconserving boundary condition [D]. Shanghai: Shanghai University, 2003: 1-34.

[1] 钟志贤, 祝长生. 横向裂纹多盘柔性转子系统的动力学特性[J]. J4, 2012, 46(10): 1839-1845.