Please wait a minute...
浙江大学学报(工学版)
土木工程     
基于剩余能量熵的供水管网可靠性优化设计
何忠华,袁一星
哈尔滨工业大学 市政环境工程学院,黑龙江 哈尔滨 150090
Reliability optimization design of water distribution system based on surplus energy entropy
HE Zhong-hua , YUAN Yi-xing
School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
 全文: PDF(1582 KB)   HTML
摘要:

针对供水管网(WDS)的可靠性优化设计问题, 提出将剩余能量熵作为可靠性度量指标,建立以剩余能量熵最大化、以管网建造年费用和运行费用最小化为设计目标的多目标优化模型.结合一典型管网算例,应用非支配排序遗传算法-II(NSGA-II)并引入诱导变异算子求解该模型,给出设计目标间的Pareto前沿面.优化结果表明,成本和采用剩余能量熵描述的可靠性指标得到了显著的优化,诱导变异算子的引入大大加快了种群向目标解域的收敛速度.在解集中,将剩余能量熵与Vaabel提出的剩余能量因子和Todini提出的恢复力指标进行比较.比较结果显示,剩余能量熵与剩余能量因子、恢复力指标均存在很好的正相关关系,证实了以剩余能量熵作为可靠性指标的可行性.通过比较管网在各管段依次发生故障时的剩余能量熵和流量熵,发现剩余能量比流量熵更能够灵敏地反映故障工况,表明基于剩余能量熵指标设计的管网更能够提高管网应对故障的能力.

Abstract:

For reliability optimization design in water distribution system (WDS), a multi-objective optimal design model was proposed using surplus power entropy (SPE) as the capacity reliability index. In this model, three design objectives were considered, including maximizing the SPE, minimizing the present value of construction capital cost and minimizing the operating cost of WDS. A typical network case was introduced and solved by the non-dominated sorted genetic algorithm-II (NSGA-II) with inducement mutation operator. Pareto fronts of the model were plotted among design objectives. The optimization results show that there was significant trade-off among costs and capacity reliability index represented by SPE. The introduction of inducement mutation operator greatly accelerates the convergence speed of population toward the target solution domain. The SPE was compared with the surplus power factor developed by Vaabel and the resilience index developed by Todini respectively. The comparison results show that a positive relationship between the SPE and the latter two, which confirms the feasibility of the SPE being used as an indicator of capacity reliability. A comparison between SPE and flow entropy of WDS under a range of pipe failures demonstrates that SPE is more sensitive to failure conditions than flow entropy index. The network designed by SPE can increase the capacity of the WDS to respond to failure problems.

出版日期: 2014-08-04
:  TU 991  
基金资助:

国家自然科学基金资助项目(51178141,51108123)

通讯作者: 袁一星,男,教授,博导     E-mail: yyx1957@163.com
作者简介: 何忠华(1980-),男,博士生,从事流体输配管网的研究. Email:hzh9913@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

何忠华,袁一星. 基于剩余能量熵的供水管网可靠性优化设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.007.

HE Zhong-hua,YUAN Yi-xing. Reliability optimization design of water distribution system based on surplus energy entropy. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.007.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.007        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1188

1] TANYIMBOH T T, BURD R, BURROWS R, et al. Modeling and reliability analysis of water distribution systems [J]. Water Science and Technology, 1999, 39(4): 249-255.
[2] 张土乔,康会宾,毛根海.城市给水管网可靠性分析初探[J].浙江大学学报:工学版,1998,32(3):243-250.
ZHANG Tu-qiao, KANG Hui-bin, MAO Gen-hai. Reliability analysis of water distribution system [J]. Journal of Zhejiang University: Engineering Science,1998,32(3):243-250.
[3] TODINI E. Looped water distribution networks design using a resilience index based heuristic approach [J]. Urban Water, 2000, 2(2): 115-122.
[4] WU Wen-yan, SIMPSON A R, MAIER H R. Trade-off analysis between cost and reliability of water distribution systems using genetic algorithms [C]∥ Integrating Water Systems. London: Taylor and Francis Group, 2010: 687-693.
[5] WU Wen-yan, MAIER H R, SIMPSON A R. Surplus power factor as a resilience measure for assessing hydraulic reliability in water transmission system optimization [J]. Journal of Water Resources Planning and Management, 2011, 137(6): 542-546.
[6] AWUMAH K, GOULTER I, BHATT S K. Entropy based redundancy measures in water distribution networks [J]. Journal of Hydraulic Engineering, 1991, 117(5): 595-614.
[7] VAABEL J, AINOLA L, KOPPEL T. Hydraulic power analysis for determination of characteristics of a water distribution system [C]∥ Water Distribution Systems Analysis Symposium. Cincinnati: [s. n.], 2006: 27-30.
[8] TANYIMBOH T T, SETIADI Y. Sensitivity analysis of entropy-constrained designs of water distribution systems [J]. Engineering Optimization, 2008, 40(5): 439-457.
[9] SETIADI Y, TANYIMBOH T T, TEMPLEMAN A B. Modeling errors, entropy and the hydraulic reliability of water distribution systems [J]. Advances in Engineering Software, 2005, 36(11/12): 780-788.
[10] 伍悦滨,王芳,田海. 基于信息熵的给水管网系统可靠性分析[J]. 哈尔滨工业大学学报,2007,39(2):251-254.
WU Yue-bin, WANG Fang, TIAN Hai. Entropy-based reliability analysis in water distribution systems [J]. Journal of Harbin Institute of Technology,2007,39(2):251-254.
[11] 何忠华,袁一星. 山地城市供水管网分区优化两步法[J]. 哈尔滨工业大学学报,2012,44(8):17-23.
HE Zhong-hua, YUAN Yi-xing. A two-step method for dividing districts and optimization of water distribution system in mountainous urban [J]. Journal of Harbin Institute of Technology,2012,44(8):17-23.
[12] KADU M S, GUPTA R, BHAVE P R. Optimal design of water networks using a modified genetic algorithm with reduction in search space [J]. Journal of Water Resources Planning and Management, 2008, 134(2): 147-160.
[13] DEB K. Multi-objective genetic algorithms: problem difficulties and construction of test problems [J]. Evolutionary Computation, 1999, 7(3): 205-230.
[14] ATIQUZZAMAN M, LIONG Shie-yui, YU Xin-ying. Alternative decision making in water distribution network with NSGA-II [J]. Journal of Water Resources Planning and Management, 2006, 132(2): 122-126.

[1] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[2] 李聪,赵敬国,杨玉龙,赵桃桃. 紫外线消毒对砂滤水中余氯及三卤甲烷的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[3] 柳景青, 罗志逢, 周晓燕, 何晓芳, 任红星, 胡宝兰, 裘尚德. 水流剪切力对供水管道管壁生物膜生长的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 250-256.
[4] 杨艳, 张土乔, 刘伟超. 给水管网负压引起污染物入侵的流量计算方法[J]. 浙江大学学报(工学版), 2015, 49(7): 1262-1267.
[5] 蒋伟, 柳景青, 叶萍, 李杭加. 氧化还原电位作为铁释放监测参数的中试研究[J]. 浙江大学学报(工学版), 2015, 49(4): 769-775.
[6] 高玖藜, 柳景青, 张土乔, 李聪, 蒋伟. 水中氯离子和腐植酸对管网铁释放的影响[J]. J4, 2013, 47(8): 1321-1328.
[7] 虞介泽,李聪,张土乔,毛欣炜. 改进的水质服务水平与加氯费用优化分析[J]. J4, 2013, 47(7): 1140-1147.
[8] 程伟平, 赵丹丹, 许刚, 蒋建群1. 供水管网爆管水力学模型与爆管定位[J]. J4, 2013, 47(6): 1057-1062.
[9] 张土乔,虞介泽,杨德军,金俊武. 管网水质监测点对二次加氯影响优化分析[J]. J4, 2012, 46(7): 1243-1247.
[10] 陈磊. 遗传最小二乘支持向量机法预测时用水量[J]. J4, 2011, 45(6): 1100-1103.
[11] 张燕, 张念卿. 基于部分覆盖理论的供水管网二次加氯点选址[J]. J4, 2011, 45(4): 695-698.
[12] 李红卫,王梦琳,吕谋,李红艳. 给水管网污染源定位模拟及影响因素分析[J]. J4, 2011, 45(1): 81-86.
[13] 沈承, 俞亭超, 张土乔. 城市供水系统突发性污染监测[J]. J4, 2010, 44(8): 1604-1607.
[14] 张燕, 李莉. 基于理想余氯质量浓度的给水管网二次加氯优化[J]. J4, 2010, 44(5): 930-934.
[15] 邵煜, 张土乔, 俞亭超. 考虑腐蚀的埋地灰口铸铁管失效预测及可靠度分析[J]. J4, 2010, 44(1): 160-165.