Please wait a minute...
浙江大学学报(工学版)
土木工程     
给水管网负压引起污染物入侵的流量计算方法
杨艳1, 张土乔1, 刘伟超2
1. 浙江大学 建筑工程学院,浙江 杭州 310027;2. 石家庄铁道大学 土木工程学院,河北 石家庄 050043
Calculation method of contaminant intrusion flow rate induced by negative pressure events in water distribution system
YANG Yan1, ZHANG Tu-qiao1, LIU Wei-chao2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; 2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
 全文: PDF(785 KB)   HTML
摘要:

针对污染物入侵流量计算时常用的孔口公式未能考虑管道周围土体的问题,将多孔介质中的一维渗流与孔口出流相结合,推导了稳定流条件下圆孔破损的污染物入侵流量估算方法.通过模型试验验证了该计算方法的准确性,计算结果与试验结果吻合较好.试验结果表明,多孔介质的存在会改变孔口入侵流量,入侵流量与孔口大小及多孔介质的渗透特性有关,估算入侵流量时应当考虑管道周围土体的影响.

Abstract:

The orifice equation is typically used for calculating intrusion inflow volumes, which does not consider the properties of the porous media surrounding the pipe. An analytical relationship was derived by combining the one-dimensional seepage and the flow through an orifice for predicting the intrusion flow rate for a circular orifice under steady-state conditions. An experiment study was conducted to validate the accuracy of the analytical expression, and the analytical results fitted well with experimental results. Experimental results indicate that the presence of porous media could change the intrusion flow rate and add dependencies on the orifice size and permeability of porous media. The impact of the soil surrounding pipelines should be considered for calculation of intrusion flow rate.

出版日期: 2015-09-10
:  TU 991  
基金资助:

国家自然科学基金资助项目(51478417);国家“863”高技术研究发展计划资助项目(2012AA062608)

通讯作者: 张土乔,男,教授,博导     E-mail: ztq@zju.edu.cn
作者简介: 杨艳(1983-),女,博士生,从事饮用水安全的研究.E-mail:tashiyangyan@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨艳, 张土乔, 刘伟超. 给水管网负压引起污染物入侵的流量计算方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.07.009.

YANG Yan, ZHANG Tu-qiao, LIU Wei-chao. Calculation method of contaminant intrusion flow rate induced by negative pressure events in water distribution system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.07.009.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.07.009        http://www.zjujournals.com/eng/CN/Y2015/V49/I7/1262

[1] LECHEVALLIER M W, GULLICK R W, KARIM M. The potential for health risks from intrusion of contaminants into the distribution system from pressure transients [EB/OL]. [2010-10-21]. http:∥www.epa.gov/ogwdw/disinfection/tcr/pdfs/whitepaper_tcr_intrusion.pdf.
[2] HOOPER S M, MOE C L, UBER J G, et al. Assessment of microbiological water quality after low pressure events in a distribution system [C]∥ Proceedings of 8th Annual Water Distribution Systems Analysis Symposium. Cincinnati: [s. n.], 2006.
[3] HUNTER P R, CHALMERS R M, HUGHES S, et al. Self-reported diarrhea in a control group: a strong association with reporting of low-pressure events in tap water [J]. Clinical Infectious Diseases, 2005, 40(4): e32-e34.
[4] GELDREICH E E, FOX K R, GOODRICH J A, et al. Searching for a water supply connection in the Cabool, Missouri disease outbreak of Escherichia coli O157∶H7 [J]. Water Research, 1992, 26(8): 1127-1137.
[5] PAYMENT P, RICHARDSON L, SIEMIATYCKI J, et al. Randomized trial to evaluate the risk of gastrointestinal disease due to consumption of drinking water meeting microbiological standards [J]. American Journal of Public Health, 1991, 81: 703-708.
[6] PAYMENT P, SIEMIATYCKI J, RICHARDSON L, et al. A prospective epidemiological study of gastrointestinal health effects due to consumption of drinking water [J]. International Journal of Environmental Health Research, 1997, 7: 531.
[7] HE X Q, CHENG L, ZHANG D Y, et al. First molecular detection of group a rotaviruses in drinking water sources in Beijing, China [J]. Bull Environ Contam Toxicol, 2009, 83: 120-124.
[8] BESNER M C, PRVOST M, REGLI S. Assessing the public health risk of microbial intrusion events in distribution systems: conceptual model, available data, and challenges [J]. Water Research, 2011, 45: 961-979.
[9] VAN ZYL J E, CLAYTON C R I. The effect of pressure on leakage in water distribution systems [C]∥ The Institution of Civil Engineers-Water Management, 2007, 160(2): 109-114.
[10] WALSKI T, BEZTS W, POSLUSZNY E T, et al. Modeling leakage reduction through pressure control [J]. American Water Works Association Journal, 2006, 94(4): 147-155.
[11] MCINNIS D. A relative-risk framework for evaluating transient pathogen intrusion in distribution systems [J]. Urban Water Journal, 2004, 1(2): 113-127.
[12] COLLINS R, BESNER M, BECK S, et al. Intrusion modeling and effect of groundwater conditions [C]∥ Water Distribution System Analysis. Tucson: [s. n.], 2010: 585594.
[13] COLLINS R, BOXALL J. The influence of ground conditions on intrusion flows through apertures in distribution pipes [J]. Journal of Hydraulic Engineering, 2013, 139: 1052-1061.
[14] MANSOUR-REZAEI S, NASER G H. Contaminant intrusion in water distribution systems: an ingress model [C] ∥ World Environmental and Water Resources Congress. Albuquerque: [s. n.], 2012: 3002-3010.
[15] YANG Y, ZHANG T, ZHU D. Influence of porous media on intrusion rate into water distribution pipes [J]. Journal of Water Supply: Research and Technology—AQUA, 2014, 63(1): 43-50.
[16] EBACHER G, BESNER M C, CLMENT B, et al. Sensitivity analysis of some critical factors affecting simulated intrusion volumes during a low pressure transient event in a full-scale water distribution system [J]. Water Research, 2012, 46: 4017-4030.
[17] BORDIERA C, ZIMMER D. Drainage equations and non-Darcian modelling in coarse porous media or geosynthetic materials [J]. Journal of Hydrology, 2000, 228(3/4): 174-187.
[18] IZBASH S. Filtracii kropnozernstom materiale [M]. Leningrad: USSR, 19-31.
[19] VENKATARAMAN P, RAO P. Darcian, transitional, and turbulent flow through porous media [J]. Journal of Hydraulic Engineering, 1998, 124(8): 840-846.
[20] ZHANG Y, LIU W, SHAO W, et al. Experimental study on water permittivity of woven polypropylene geotextile under tension [J]. Geotextiles and Geomembranes, 2013, 37: 10-15.
[21] JTG E40—2007,公路土工试验规程[S]. 北京:人民交通出版社,2007.
[22] 刘伟超. 土工织物管袋充填特性及计算理论研究[D]. 浙江: 浙江大学, 2012.

[1] 郑成志, 高金良, 何文杰. 基于FastICA算法的物理漏损流量分析模型[J]. 浙江大学学报(工学版), 2016, 50(6): 1031-1039.
[2] 李聪,赵敬国,杨玉龙,赵桃桃. 紫外线消毒对砂滤水中余氯及三卤甲烷的影响[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[3] 柳景青, 罗志逢, 周晓燕, 何晓芳, 任红星, 胡宝兰, 裘尚德. 水流剪切力对供水管道管壁生物膜生长的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 250-256.
[4] 蒋伟, 柳景青, 叶萍, 李杭加. 氧化还原电位作为铁释放监测参数的中试研究[J]. 浙江大学学报(工学版), 2015, 49(4): 769-775.
[5] 何忠华,袁一星. 基于剩余能量熵的供水管网可靠性优化设计[J]. 浙江大学学报(工学版), 2014, 48(7): 1188-1194.
[6] 高玖藜, 柳景青, 张土乔, 李聪, 蒋伟. 水中氯离子和腐植酸对管网铁释放的影响[J]. J4, 2013, 47(8): 1321-1328.
[7] 虞介泽,李聪,张土乔,毛欣炜. 改进的水质服务水平与加氯费用优化分析[J]. J4, 2013, 47(7): 1140-1147.
[8] 程伟平, 赵丹丹, 许刚, 蒋建群1. 供水管网爆管水力学模型与爆管定位[J]. J4, 2013, 47(6): 1057-1062.
[9] 张土乔,虞介泽,杨德军,金俊武. 管网水质监测点对二次加氯影响优化分析[J]. J4, 2012, 46(7): 1243-1247.
[10] 陈磊. 遗传最小二乘支持向量机法预测时用水量[J]. J4, 2011, 45(6): 1100-1103.
[11] 张燕, 张念卿. 基于部分覆盖理论的供水管网二次加氯点选址[J]. J4, 2011, 45(4): 695-698.
[12] 李红卫,王梦琳,吕谋,李红艳. 给水管网污染源定位模拟及影响因素分析[J]. J4, 2011, 45(1): 81-86.
[13] 沈承, 俞亭超, 张土乔. 城市供水系统突发性污染监测[J]. J4, 2010, 44(8): 1604-1607.
[14] 张燕, 李莉. 基于理想余氯质量浓度的给水管网二次加氯优化[J]. J4, 2010, 44(5): 930-934.
[15] 邵煜, 张土乔, 俞亭超. 考虑腐蚀的埋地灰口铸铁管失效预测及可靠度分析[J]. J4, 2010, 44(1): 160-165.