Please wait a minute...
浙江大学学报(工学版)
电信技术     
任意2k点存储器结构傅里叶处理器
夏凯锋,周小平,吴斌
中国科学院 微电子研究所,北京 100029
Memory-based FFT processor for arbitrary 2k-point FFT computations
XIA Kai feng, ZHOU Xiao ping, WU Bin
Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF(847 KB)   HTML
摘要:

针对任意2k点数快速傅里叶变换(FFT)运算,设计并实现一种拥有并行地址无冲突策略的存储器结构FFT处理器.该策略可以支持原位回存,连续帧计算模式,可变多种点数和任意2k长度的FFT运算.通过这种地址策略,FFT处理器所能达到的吞吐率由每一级抽取时的限制条件集合个数所决定.因此这种地址策略可以通过改变计算单元基底和调整计算单元并行度的方式可控地调整吞吐率.为了验证本地址策略的可行性,设计一款应用于长期演进(LTE)系统的128~2 048点的可配置FFT处理器.处理器采用中芯国际55 nm CMOS工艺实现,在122.88 MHz工作频率下内核面积为0.615 mm2,功耗为32.4 mW.FFT处理器的ASIC结果表明所提策略具有优秀的计算长度灵活性,硬件效率,可以支持任意2k长度的FFT计算.

Abstract:

An efficient memory-based fast Fourier transform (FFT) processor with parallel conflict-free address scheme was designed for arbitrary 2k-point FFT computations. The address scheme can support in-place strategy, continuous-flow mode, and variable sizes for arbitrary-long sized FFTs.  The available throughput of FFT processor is decided by every stage's data decimation restriction set number according to this scheme. Then the address scheme can adjust the processor throughput by changing the computation radix and the parallelism of the arithmetic processing units. A configurable 128~2 048 point FFT processor in LTE system was designed to verify the availability of this scheme. The FFT processor occupies 0.615 mm2 core area and 32.4 mW power consumption at 122.88 MHz frequency in SMIC 55nm technology. The ASIC results show that the proposed address scheme has excellent point flexibility, hardware efficiency, and can support almost any 2k-point FFT implementations.

出版日期: 2016-11-01
:  TN 47  
基金资助:

国家科技重大专项资助项目(2014ZX03001011-002).

通讯作者: 吴斌,男,研究员. ORCID:0000-0002-0877-070X.     E-mail: wubin@ime.ac.cn
作者简介: 夏凯锋(1988-),男,博士生, 从事通信系统VLSI实现等研究,ORCID:0000-0002-5899-1578. E-mail: xiakaifeng@ime.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

夏凯锋,周小平,吴斌. 任意2k点存储器结构傅里叶处理器[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.11.027.

XIA Kai feng, ZHOU Xiao ping, WU Bin. Memory-based FFT processor for arbitrary 2k-point FFT computations. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.11.027.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.11.027        http://www.zjujournals.com/eng/CN/Y2016/V50/I11/2239

[1] PEASE M C. Organization of large scale Fourier processors [J]. Journal of the Association for Computing Machinery, 1969, 16(3): 474-482.
[2] COHEN D. Simplified control of FFT hardware [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976, 24(6): 577-579.
[3] JOHNSON L G. Conflict free memory addressing for dedicated FFT hardware [J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1992 39(5): 312-316.
[4] JO B G, SUNWOO M H. New continuousflow mixedradix (CFMR) FFT processor using novel inplace strategy [J]. IEEE Transactions on Circuits and Systems IRegular Papers, 2005, 52(5): 911-919.
[5] BAEK J, CHOI K. New address generation scheme for memorybased FFT processor using multiple radix2 butterflies [C]∥ 2008 International SoC Design Conference. Busan, Korea: IEEE, 2008, I273-276.
[6] TSAI P, LIN C, A Generalized conflictfree memory addressing scheme for continuousfow parallelprocessing FFT processors with rescheduling [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19(12): 2290-2302.
[7] HUANG S, CHEN S, A highthroughput radix16 FFT processor with parallel and normal input/output ordering for IEEE 802153c systems [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(8): 1752-1765.
[8] CHO T, LEE H. A highspeed lowcomplexity modified radix25 FFT processor for high rate WPAN applications [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21(1): 187-191.
[9] WANG C, YAN Y, FU X. A highthroughput low complexity radix2422 23 FFT/IFFT processor with parallel and normal input/output order for IEEE 802-11ad systems [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(11): 2728-2732.
[10] KIM E J, LEE J H, SUNWOO M H. Novel shared multiplier scheduling scheme for areaefficient FFT/IFFT processors [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(9): 1689-1699.
[11] YANG C H, YU T H, MARKOVIC D. Power and area minimization of reconfigurable FFT processors: A 3GPPLTE example [J]. IEEE Journal of SolidState Circuits , 2012, 47(3): 757-768.
[12] PENG S, SHR K, CHEN C et al. Energy-efficient 128 ~ 2048/1536-point FFT processor with resource block mapping for 3GPP-LTE system [C]∥2010 International Conference on Green Circuits and Systems. Shanghai, China: IEEE, 2010: 14-17.
[13] YU C, YEN M H. Areaefficient 128 2 048/1 536point pipeline FFT processor for LTE and mobile WiMaX systems [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(9): 1793-1800.

[1] 陈超, 罗小华, 陈淑群, 俞国军. 基于现场可编程门阵列的高斯滤波算法优化实现[J]. 浙江大学学报(工学版), 2017, 51(5): 969-975.
[2] 蓝帆, 潘赟, 严晓浪, 宦若虹, CHENG Kwang ting. 片上网络良率评估的GPU加速[J]. 浙江大学学报(工学版), 2017, 51(1): 160-167.
[3] 王树朋,黄凯,严晓浪. 基于遗传算法的覆盖率驱动测试产生器[J]. 浙江大学学报(工学版), 2016, 50(3): 580-588.
[4] 韩晓霞, 韩雁. 填充辅助多晶硅图形的参数成品率版图优化[J]. 浙江大学学报(工学版), 2015, 49(12): 2333-2339.
[5] 高史义, 罗小华, 卢宇峰, 刘富春, 张晨秋. 基于遗传算法的功能覆盖率收敛技术[J]. 浙江大学学报(工学版), 2015, 49(8): 1509-1515.
[6] 修思文, 李彦哲, 黄凯, 马德, 晏荣杰, 严晓浪. 面向MPSoC性能评估的高速缓存建模技术[J]. 浙江大学学报(工学版), 2015, 49(7): 1367-1375.
[7] 修思文, 黄凯, 余慜, 谢天艺, 葛海通, 严晓浪. 面向非写分配高速缓存的一致性协议及实现[J]. 浙江大学学报(工学版), 2015, 49(2): 351-359.
[8] 谭腾飞,马德,黄凯,马琪. 多层图像叠加处理的低功耗自适应流水线设计[J]. 浙江大学学报(工学版), 2015, 49(1): 27-35.
[9] 王钰博,黄凯,陈辰,冯炯,葛海通,严晓浪. 嵌入式Flash读取加速技术及实现[J]. 浙江大学学报(工学版), 2014, 48(9): 1570-1579.
[10] 修思文, 黄凯, 余慜, 谢天艺, 葛海通, 严晓浪. 面向非写分配高速缓存的一致性协议及实现[J]. 浙江大学学报(工学版), 2014, 48(9): 1-9.
[11] 黄凯杰, 黄凯, 马德, 王钰博, 冯炯, 葛海通, 严晓浪. 基于IP-XACT标准的SoC集成方法[J]. J4, 2013, 47(10): 1770-1776.
[12] 项晓燕,陈志坚,孟建熠,严晓浪. 基于邻行链接访问的低功耗指令高速缓存[J]. J4, 2013, 47(7): 1213-1217.
[13] 陈志坚,孟建熠,葛海通,严晓浪. 基于内存页面动态合并的旁路转换缓冲器设计[J]. J4, 2012, 46(1): 118-122.
[14] 陈志坚,孟建熠,葛海通,严晓浪. 支持程序无缝切换的高性能硬件堆栈[J]. J4, 2011, 45(9): 1587-1592.
[15] 张洋, 王秀敏, 陈豪威. 基于FPGA的低密度奇偶校验码编码器设计[J]. J4, 2011, 45(9): 1582-1586.