Please wait a minute...
浙江大学学报(工学版)
自动化技术、通信工程     
填充辅助多晶硅图形的参数成品率版图优化
韩晓霞, 韩雁
浙江大学 微电子与光电子研究所, 浙江 杭州 310027
Layout optimization of parametric yield by filling dummy polysilicon pattern
HAN Xiao xia, HAN Yan
Institute of Microelectronics and Optoelectronics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1311 KB)   HTML
摘要:

在纳米工艺下,为了更好地抵抗工艺波动的影响,减小位于标准单元边界处的MOS管沟道长度随聚焦误差引起的变化,提出在现有版图基础上在两相邻标准单元间填充最优辅助多晶硅图形的版图优化方式以提高芯片的参数成品率.通过修改所填充的辅助多晶硅图形的线宽、线间距以及线条数的特征属性,利用光刻仿真得到针对不同多晶硅特征图形的最优辅助多晶硅图形,由此构建一个查表模型.在现有版图基础上,对位于标准单元边界处的各个MOS管提取出其相应的多晶硅特征图形,并利用所提取出的特征图形查找查表模型分别得到最优的辅助多晶硅图形,根据版图设计规则将辅助多晶硅图形填充至两相邻标准单元之间.分别对测试版图优化前后进行光刻仿真分析,结果表明:采用所提出的版图优化方法在不影响位于标准单元内的MOS管的多晶硅线宽变化前提下,位于标准单元边界的MOS管的多晶硅线宽变化量从版图优化前的10.58 nm降低至4.79 nm.

Abstract:

A layout optimization design method by filling dummy polysilicon pattern between two adjacent standard cells for existing layout was proposed to improve the parametric yield to resist the effect of process variation and reduce the linewidth variation of the MOS transistors located at the boundary of standard cells due to defocus under the nano technology. Through the modification of the feature attribute of the dummy polysilicon pattern, such as linewidth, line to line space and the number of lines, the optimal dummy polysilicon pattern for the different feature patterns of gate poly could be obtained by using lithography simulation. A lookup table model for optimal dummy polysilicon was created. On the basis of the existing layout, the feature pattern of gate poly for the MOS transistors located at the boundary of standard cells was extracted. According to the extracted feature pattern, the optimal dummy polysilicon pattern searched from the lookup table was inserted between two adjacent standard cells following the design rules. The lithography simulation was taken for a test layout before and after optimization. Results show that the linewidth variation of gate poly for MOS transistors located in the standard cells is not affected when use the proposed layout optimization method, and the linewidth variation of gate poly for MOS transistors located at the boundary of standard cells is reduced from 10.58 nm to 4.79 nm. 

出版日期: 2015-12-31
:  TN 47  
基金资助:

国家青年自然科学基金资助项目(61106035);国家自然科学基金资助项目(61274035).

作者简介: 韩晓霞(1972—),女,博士,从事数字集成电路设计及设计方法研究.ORCID: 0000 0001 8162 2685.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

韩晓霞, 韩雁. 填充辅助多晶硅图形的参数成品率版图优化[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.12.013.

HAN Xiao xia, HAN Yan. Layout optimization of parametric yield by filling dummy polysilicon pattern. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.12.013.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.12.013        http://www.zjujournals.com/eng/CN/Y2015/V49/I12/2333

[1] RAMAKRISHNAN H, SHEDABALE S, RUSSELL G, et al. Analysing the effect of process variation to reduce parametric yield loss [C] ∥ IEEE International Conference on Integrated Circuit Design and Technology and Tutorial. Austin: IEEE, 2008: 171-176.
[2] BAKER A M, WANG L, JIANG Y. High level circuit synthesis with system level statistical static timing analysis under process variation [C] ∥ IEEE 56th International Midwest Symposium on Circuits and Systems. Columbus: IEEE, 2013: 817-820.
[3] MIRANDA M, FIERICKX B, ZUBER P, et al. Variability aware modeling of SoCs: from device variations to manufactured system yield [C] ∥  Quality of Electronic Design. San Jose: ISQED, 2009: 547-553.
[4] MULLER J, JALLEPALLI S, MOORAKA R, et al. Employing an on die test chip for maximizing parametric yields of 28 nm parts [C] ∥ International Conference on Microelectronic Test Structures, Tempe: ICMTS, 2015: 50-53.
[5] BYUNG S K, BYOUNG H L, HUNG_BOK C, et al. Parametric yield aware sign off flow in 65/45 nm [C] ∥ SoC Design Conference (ISOCC). Busan: ISOCC, 2008: 74-77.
[6] BORKAR S, KAMIK T, NARENDRA S, et al. Parameter variations and impact on circuits and microarchitecture [C] ∥ Proceedings of ACM/IEEE Design Automation Conference. Anaheim: ACM/IEEE, 2003: 338-342.
[7] UKHOV I, ELES P, PENG Z. Probabilistic analysis of power and temperature under process variation for electronic system design [J]. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 2014, 33(6): 931-944.
[8] BASU S, THAKORE P, VEMURI R. Process variation tolerant standard cell library development using reduced dimension statistical modeling and optimization techniques [C] ∥ 8th International Symposium on Quality Electronic Design. San Jose: ISQED, 2007: 814-820.
[9] BHUNIA S, MUKHOPADHYAY S, ROY K. Process variations and process tolerant design [C] ∥ 20th International Conference on VLSI Design. Bangalore: VLSI DESIGN, 2007: 699-704.
[10] DUTT S, CHAUHAN A, NANDI S, et al. Variability aware parametric yield enhancement via post silicon tuning of hybrid redundant MAC units [C] ∥ 2015 International Symposium on VLSI Design, Automation and Test (VLSI DAT). Hsinchu: VLSI DAT, 2015: 1-4.
[11] POOMIMA P, TRIPATHY S K, RAO R, et al. Resolution enhancement techniques for optical lithography [C] ∥ Proceedings of SPIE The International Society for Optical Engineering. Washington: SPIE, 2002: 1260-1262.
[12] CHANDRACHOLLD M, LEUNG T Y B, YU K, et al. Overcoming mask etch challenges for 45 nm and beyond [C] ∥ Mask and Lithography Conference (EMLC), European. Dresden: EMLC, 2008: 1-10.
[13] CHAN S H, LAM E Y. Inverse image problem of designing phase shifting masks in optical lithography [C] ∥ 15th IEEE International Conference on Image Processing, ICIP 2008. San Diego: IEEE, 2008: 1832-1835.
[14] PENG Y, SHI S X, PAN D Z. Process variation aware OPC with variational lithography modeling [C] ∥ Proceedings of ACM/IEEE Design Automation Conference. San Francisco: ACM/IEEE, 2006: 785-790.
[15] BOMA A, PROGLER C, BLAAUW D. Correlation analysis of CD variation and circuit performance under multiple sources of variability [C] ∥ Proceedings of SPIE the International Society for Optical Engineering. Bellingham: SPIE, 2005: 168-177.
[16] MOHSEN R, JACK S. A yield improvement technique in severe process, voltage, and temperature variations and extreme voltage scaling [J]. Microelectronics Reliability. 2014, 54(12): 2813-2823.
[17] MIRZAEI M, MOSAFFA M, MOHAMMADI S. Variation aware approaches with power improvement in digital circuits [J]. Integration, the VLSI Journal. 2015, 48(1): 83-100.
[18] SALEHUDDIN F, AHMAD I, HAMID F A, et al. Optimization of input process parameters variation on threshold voltage in 45 nm NMOS device [J]. International Journal of Physical Sciences, 2011, 6(30):7026-7034.
[19] BEECE D K, JINJUN XIONG, VISWESWARIAH C, et al. Transistor sizing of custom high performance digital circuits with parametric yield considerations [C] ∥ Proceedings of ACM/IEEE Design Automation Conference (DAC). Anaheim: ACM/IEEE, 2010:781-786.
[20] ORSHANSKY M, MILOR L, CHEN P, et al. Impact of spatial intrachip gate length variability on the performance of high speed digital circuits [J]. IEEE Transactions On Computer Aided Design of Integrated Circuits and Systems, 2002, 21(5): 544-553.
[21] GUPTA P, HENG F L. Toward a systematic varation aware timing methodology \[C\]∥Proceedings of the 41st annual Design Automation Conference. San Diego: ACM, 2004: 321-326.
[22] KAHNG A, MUDDU S, SHARMA P. Defocus aware leakage estimation and control [J]. IEEE Transaction On Computed Aided Design of Integrated Circuits and Systems. 2008, 27(2):130-140.
[23] KNUDSEN J, MARKERING VP. Nangate 45nm open cell library [EB/OL]. (2008 04 16) [2015 11 10]. http:∥www.si2.org/events_dir/2008/ oacspring2008/nan.pdf.
[24] CAO K, DOBRE S, HU J. Standard cell characterization considering lithography induced variations [C] ∥ Design Automation Conference, 43rd ACM/IEEE. San Francisco: ACM/IEEE, 2006: 801-804.
[25] 2010Tables_FEP_FOCUS_C_ITRS [EB/OL]. (2010 12 20) [2015 11 10]. http:∥www.itrs.net/ITRS%201999 2014%20Mtgs,%20Presentations%20&%20Links/2010ITRS/2010Update/ToPost/2010Tables_FEP_FOCUS_C_ITRS.xls

No related articles found!