Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (1): 150-160    DOI: 10.3785/j.issn.1008-973X.2024.01.016
交通工程、土木工程     
柔性层状石墨烯感应元件制备及其力敏特性
吴志强1(),卫军2,董荣珍2
1. 信阳师范大学 建筑与土木工程学院,河南 信阳 464000
2. 中南大学 土木工程学院,湖南 长沙 410075
Preparation and force sensitivity of flexible layered graphene sensor
Zhiqiang WU1(),Jun WEI2,Rongzhen DONG2
1. College of Architecture and Civil Engineering, Xinyang Normal University, Xinyang 464000, China
2. School of Civil Engineering, Central South University, Changsha 410075, China
 全文: PDF(2378 KB)   HTML
摘要:

为了弥补现有传感器在混凝土非连续变形监测上的不足,采用特殊构型法,以还原氧化石墨烯-纳米纤维素(RGO-CNF)为传感层、聚二甲基硅氧烷(PDMS)为基层,设计和制备了PDMS/RGO-CNF/PDMS层状感应元件,对其力学、电学和力敏性能进行测试和分析. 结果表明,CNF能够有效地协助RGO在异丙醇中均匀分散,经化学溶胀和孔隙填充构建的传感层与基底层紧密结合,能够承受超过100%的拉伸应变. 感应元件经过约10次循环拉伸后,应变电阻响应达到稳定状态,表现出良好的可回复性和可重复性. 在0~10%应变下,感应元件的电阻变化率近似呈线性变化,灵敏系数可达15,随应变继续增大,电阻变化率呈指数型增长. 应变电阻响应强度随应变速率的增大而提高,利用建立的考虑应变率效应的应变电阻响应模型,能够较好地预测感应元件的力敏行为.

关键词: 石墨烯层状感应元件力敏性应变电阻响应模型纳米纤维素    
Abstract:

A PDMS/RGO-CNF/PDMS layered sensor was designed and prepared with reduced graphene oxide-cellulose nanofiber (RGO-CNF) as the sensing layer and polydimethylsiloxane (PDMS) as the substrate by using a special configuration method in order to make up for the shortcomings of existing sensors in monitoring discontinuous deformation of concrete. The mechanical, electrical properties and force sensitivity of the sensor were tested and analyzed. Results show that CNF can effectively assist RGO to uniformly disperse in isopropanol. The sensing layer constructed through chemical swelling and pore filling was tightly bonded to the substrate layer, and could withstand over 100% tensile strain. The strain resistance response of the sensor reaches a stable state after about 10 cycles of stretching, exhibiting good recoverability and repeatability. The resistance change rate of the sensor shows an approximate linear variation within the range of 0-10% strain, with a sensitivity coefficient of up to 15. The resistance change rate increases exponentially as the strain continues to increase. The strain resistance response strength increases with the increase of strain rate, and the established response model considering strain rate effect can better predict the force sensitive behavior of the sensor.

Key words: graphene    layered sensor    force sensitivity    strain resistance response model    cellulose nanofiber
收稿日期: 2023-01-09 出版日期: 2023-11-07
CLC:  TU 599  
基金资助: 国家自然科学基金资助项目(51778628);河南省科技攻关计划资助项目(222102210241)
作者简介: 吴志强(1988—),男,讲师,博士,从事智能材料与结构的研究. orcid.org/0000-0003-2679-9247. E-mail: wuzq@xynu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴志强
卫军
董荣珍

引用本文:

吴志强,卫军,董荣珍. 柔性层状石墨烯感应元件制备及其力敏特性[J]. 浙江大学学报(工学版), 2024, 58(1): 150-160.

Zhiqiang WU,Jun WEI,Rongzhen DONG. Preparation and force sensitivity of flexible layered graphene sensor. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 150-160.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.016        https://www.zjujournals.com/eng/CN/Y2024/V58/I1/150

图 1  石墨烯感应元件的结构组成
图 2  石墨烯感应元件的应变电阻响应示意图
编号 组分
R1 IPA+RGO
R2 IPA+SCA+RGO
R3 IPA+PVP+RGO
R4 IPA+CNF+RGO
表 1  RGO分散试验分组
图 3  RGO分散液的吸光度
图 4  R2和R4组分散液吸光度随超声时间的变化
t/h dR2 /nm dR4 /nm
0.5 604.1 1583.2
1 493.7 956.6
2 410.3 753.4
5 287.5 672.4
表 2  R2和R4组分散液的平均粒径
图 5  R2和R4组分散液的表观状态随静置时间的变化
图 6  PDMS/RGO-CNF/PDMS感应元件的制备过程
图 7  PRCP感应元件制备过程中各部分的SEM图
图 8  PRCP感应元件的应力-应变和电阻测试
图 9  不同石墨烯分布密度的PRCP感应元件的应力-应变曲线
图 10  PRCP感应元件初始电阻随石墨烯分布密度变化曲线
图 11  首次拉伸时PⅠ、PⅡ和PⅢ电阻变化率随应变的变化曲线
图 12  循环拉伸时PⅠ、PⅡ和PⅢ电阻变化率随应变的变化曲线
图 13  拟合直线斜率随循环次数的变化曲线
图 14  100%应变范围内PⅠ、PⅡ和PⅢ的应变电阻响应曲线
图 15  PⅡ以不同速率首次拉伸后电阻变化率随静置时间的变化曲线
图 16  PⅡ以不同速率拉伸时电阻变化率随应变的变化曲线
v/(mm·min?1) δ A B C D γd0
1 0.19 4.68 ?6.46 5.54 ?2.77 17.12
60 0.26 6.50 ?10.51 5.67 ?1.29 15.46
120 0.30 10.11 ?19.95 13.02 ?2.90 15.08
表 3  PⅡ以不同速率拉伸试验结果的拟合曲线的参数值
1 杨静, 李大鹏, 岳清瑞, 等 建筑与基础设施全寿命周期智能化的研究现状及关键科学问题[J]. 中国科学基金, 2021, 35 (4): 620- 626
YANG Jing, LI Dapeng, YUE Qingrui, et al Key scientific issues and state-of-art in whole-lifecycle intelligentization of buildings and infrastructures[J]. Bulletin of National Natural Science Foundation of China, 2021, 35 (4): 620- 626
doi: 10.16262/j.cnki.1000-8217.2021.04.012
2 丁思齐, 韩宝国, 欧进萍 本征自感知混凝土及其智能结构[J]. 工程力学, 2022, 39 (3): 1- 10
DING Siqi, HAN Baoguo, OU Jinping Intrinsic self-sensing concrete for smart structures[J]. Engineering Mechanics, 2022, 39 (3): 1- 10
doi: 10.6052/j.issn.1000-4750.2021.06.ST02
3 鲍跃全, 李惠 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52 (5): 1- 11
BAO Yuequan, LI Hui Artificial intelligence for civil engineering[J]. China Civil Engineering Journal, 2019, 52 (5): 1- 11
doi: 10.15951/j.tmgcxb.2019.05.001
4 CHAU F W Effect of transverse sensitivity of strain gage on the accuracy of computed principle strain[J]. Experimental Techniques, 2010, 11 (7): 22- 23
5 RODRIGUEZ G, CASAS J R, VILLALBA S Cracking assessment in concrete structures by distributed optical fiber[J]. Smart Materials and Structures, 2015, 24 (3): 035005
doi: 10.1088/0964-1726/24/3/035005
6 RODRIGUEZ G, CASAS J R, VILLALBA S Shear crack width assessment in concrete structures by 2D distributed optical fiber[J]. Engineering Structures, 2019, 195: 508- 523
doi: 10.1016/j.engstruct.2019.05.079
7 BISWAL S, RAMASWAMY A Measurement of existing prestressing force in concrete structures through an embedded vibrating beam strain gauge[J]. Measurement, 2016, 83: 10- 19
doi: 10.1016/j.measurement.2016.01.031
8 FENG Q, CUI J, WANG Q, et al A feasibility study on real-time evaluation of concrete surface crack repairing using embedded piezoceramic transducers[J]. Measurement, 2018, 122: 591- 596
doi: 10.1016/j.measurement.2017.09.015
9 LIAO W I, CHIU C K Seismic health monitoring of a space reinforced concrete frame structure using piezoceramic-based sensors[J]. Journal of Aerospace Engineering, 2019, 32 (3): 04019015
doi: 10.1061/(ASCE)AS.1943-5525.0000999
10 LIU Y F, CHO S, SPENCER B F, et al Concrete crack assessment using digital image processing and 3D scene reconstruction[J]. Journal of Computing in Civil Engineering, 2016, 30 (1): 04014124
doi: 10.1061/(ASCE)CP.1943-5487.0000446
11 KIM H, AHN E, SHIN M, et al Crack and noncrack classification from concrete surface images using machine learning[J]. Structural Health Monitoring, 2019, 18 (3): 725- 738
doi: 10.1177/1475921718768747
12 高军礼, 周华, 宋海涛, 等 基于残差注意力和金字塔上采样的图像语义分割[J]. 信阳师范学院学报: 自然科学版, 2022, 35 (1): 134- 140
GAO Junli, ZHOU Hua, SONG Haitao, et al Image semantic segmentation based on residual attention and pyramid upsampling[J]. Journal of Xinyang Normal University: Natural Science Edition, 2022, 35 (1): 134- 140
13 ROUCHIER S, FORAY G, GODIN N, et al Damage monitoring in fibre reinforced mortar by combined digital image correlation and acoustic emission[J]. Construction and Building Materials, 2013, 38: 371- 380
doi: 10.1016/j.conbuildmat.2012.07.106
14 PERRY M, MCKEEMAN I, SAAFI M, et al Wireless surface acoustic wave sensors for displacement and crack monitoring in concrete structures[J]. Smart Materials and Structures, 2016, 25 (3): 035035
doi: 10.1088/0964-1726/25/3/035035
15 LIU H, DONG M, HUANG W, et al Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing[J]. Journal of Materials Chemistry C, 2017, 5 (1): 73- 83
doi: 10.1039/C6TC03713E
16 LU S, TIAN C, WANG X, et al Strain sensing behaviors of GnPs/epoxy sensor and health monitoring for composite materials under monotonic tensile and cyclic deformation[J]. Composites Science and Technology, 2018, 158 (5): 94- 100
17 JEONG Y R, PARK H, JIN S W, et al Highly stretchable and sensitive strain sensors using fragmentized graphene foam[J]. Advanced Functional Materials, 2015, 25 (27): 4228- 4236
doi: 10.1002/adfm.201501000
18 LIU Q, CHEN J, LI Y, et al High-performance strain sensors with fish scale-like graphene sensing layers for full-range detection of human motions[J]. ACS Nano, 2016, 10 (8): 7901- 7906
doi: 10.1021/acsnano.6b03813
19 BONAVOLONTÀ C, CAMERLINGO C, CAROTENUTO G, et al Characterization of piezoresistive properties of graphene-supported polymer coating for strain sensor applications[J]. Sensors and Actuators A: Physical, 2016, 252: 26- 34
doi: 10.1016/j.sna.2016.11.002
20 吴志强, 卫军, 董荣珍 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报: 工学版, 2020, 54 (2): 233- 240
WU Zhiqiang, WEI Jun, DONG Rongzhen Graphene-based piezoresistive composite and application in crack monitoring[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 233- 240
21 SIMMONS J G Incorporation of electric-field penetration of the electrodes in the theory of electron tunnelling through a dielectric layer[J]. British Journal of Applied Physics, 2002, 18 (3): 269
22 YANG X, QIU L, CHENG C, et al Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films[J]. Angewandte Chemie-International Edition, 2011, 50 (32): 7325- 7328
doi: 10.1002/anie.201100723
23 JOHNSON D W, DOBSON B P, COLEMAN K S A manufacturing perspective on graphene dispersions[J]. Current Opinion in Colloid and Interface Science, 2015, 20 (5/6): 367- 382
doi: 10.1016/j.cocis.2015.11.004
24 王晨, 燕绍九, 南文争, 等 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47 (7): 50- 56
WANG Chen, YAN Shaojiu, NAN Wenzheng, et al Effect of surfactants on preparation of high concentration graphene aqueous dispersion[J]. Journal of Materials Engineering, 2019, 47 (7): 50- 56
doi: 10.11868/j.issn.1001-4381.2018.000566
25 POORSARGOL M, ALIMOHANNADIAN M, SOHRABI B, et al Dispersion of graphene using surfactant mixtures: experimental and molecular dynamics simulation studies[J]. Applied Surface Science, 2019, 464 (2): 440- 450
26 LIU X, KUANG W, GUO B Preparation of rubber/graphene oxide composites with in-situ interfacial design[J]. Polymer, 2015, 56 (1): 553- 562
27 郭玲梅, 汪洋, 徐伟芳 硅橡胶拉伸行为的应变率相关性测试和表征[J]. 高压物理学报, 2019, 33 (5): 93- 99
GUO Lingmei, WANG Yang, XU Weifang Experimental investigation and modeling of strain-rate dependence on tensile behavior of silicone rubbers[J]. Chinese Journal of High Pressure Physics, 2019, 33 (5): 93- 99
doi: 10.11858/gywlxb.20180664
[1] 郭萌,张玉茹,魏幸,王文静. 固胺负载SBA-15的石墨烯改性及其CO2吸附性能[J]. 浙江大学学报(工学版), 2022, 56(8): 1588-1596.
[2] 任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.
[3] 吴志强,卫军,董荣珍. 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报(工学版), 2020, 54(2): 233-240.
[4] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[5] 肖丙刚,谢治毅,孙润亮. 基于石墨烯的隔离器理论设计与分析[J]. 浙江大学学报(工学版), 2015, 49(1): 42-47.
[6] 王晓,姚晓莉,候鉴峰,范利武,徐旭,俞自涛,胡亚才. 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报(工学版), 2014, 48(7): 1272-1277.