Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (8): 1597-1606    DOI: 10.3785/j.issn.1008-973X.2023.08.012
土木工程、交通工程     
基于X-ray CT原位三轴剪切试验的砂土颗粒材料微观动力学
苗泽锴1,2(),张大任1,2,马刚1,2,*(),邹宇雄1,2,陈远3,周伟1,2,肖宇轩4
1. 武汉大学 水资源工程与调度全国重点实验室,湖北 武汉 430072
2. 武汉大学 水工程科学研究院,湖北 武汉 430072
3. 长江设计集团有限公司,湖北 武汉 430010
4. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063
Microscopic dynamics of sand particles based on X-ray computed tomography and in-situ triaxial compression
Ze-kai MIAO1,2(),Da-ren ZHANG1,2,Gang MA1,2,*(),Yu-xiong ZOU1,2,Yuan CHEN3,Wei ZHOU1,2,Yu-xuan XIAO4
1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
2. Institute of Water Engineering Sciences, Wuhan University, Wuhan 430072, China
3. CISPDR Corporation, Wuhan 430010, China
4. China Railway Siyuan Survey and Design Group Co. Ltd, Wuhan 430063, China
 全文: PDF(3189 KB)   HTML
摘要:

将X射线断层扫描技术(CT)与原位三轴剪切试验相结合,分析渥太华砂在剪切过程中的微观动力学演化规律. 在试验过程中共完成15次X射线扫描,使用图像分割算法进行颗粒分割并使用球谐函数重构颗粒的表面形貌,根据颗粒的多尺度形态指标序列实现整个加载过程中颗粒的准确匹配与追踪,并分析颗粒位移、转动、局部非仿射运动和局部孔隙率等微观动力学和微观结构指标的演化规律. 在剪切过程中颗粒体系的竖向位移分布呈现2个锥形区域,颗粒的转动分布出现明显的X型剪切带. 用于度量局部塑性变形程度的局部非仿射运动和局部体积分数呈现出较为明显的相关关系,表明颗粒微观动力学与其微观结构之间存在因果关系,局部自由体积较大的地方更易发生塑性变形.

关键词: 颗粒材料X射线断层扫描(CT)三轴试验微观动力学微观结构    
Abstract:

X-ray computed tomography (CT) and in-situ triaxial shear test were combined to analyze the microscopic dynamics evolution of Ottawa sand under triaxial compression. A total of 15 X-ray scans were taken during the experiment. The particles were separated by the image segmentation algorithm and reconstructed by spherical harmonic functions. The particles were matched exactly and tracked during the loading process based on the multi-scale morphological indicators of particles, and the evolution of microscopic dynamics and microscopic structural indicators, such as particle displacement, rotation, local non-affine motion, and local porosity were analyzed. During the shear process, the vertical displacement distribution of the particle system presents two conical regions, and the rotational distribution of the particles exhibits obvious X-shaped shear bands. The local non-affine motion, which was used to measure the local plastic deformation, was significantly correlated with the local volume fraction, suggesting a causal relationship between the microscopic dynamics and particle microstructure, i.e., plastic deformation was more likely to occur where the local free volume was large.

Key words: granular material    X-ray computed tomography (CT)    triaxial compression    microscopic dynamics    microstructure
收稿日期: 2022-09-18 出版日期: 2023-08-31
CLC:  TU 43  
基金资助: 国家重点研发计划资助项目(2022YFC3005503);国家自然科学基金资助项目(51825905,U1865204);云南省重大科技专项计划资助项目(202202AF080004)
通讯作者: 马刚     E-mail: 2016301580064@whu.edu.cn;magang630@whu.edu.cn
作者简介: 苗泽锴(1998—),男,硕士生,从事高坝结构数值仿真研究. orcid.org/0000-0003-1806-4910. E-mail: 2016301580064@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
苗泽锴
张大任
马刚
邹宇雄
陈远
周伟
肖宇轩

引用本文:

苗泽锴,张大任,马刚,邹宇雄,陈远,周伟,肖宇轩. 基于X-ray CT原位三轴剪切试验的砂土颗粒材料微观动力学[J]. 浙江大学学报(工学版), 2023, 57(8): 1597-1606.

Ze-kai MIAO,Da-ren ZHANG,Gang MA,Yu-xiong ZOU,Yuan CHEN,Wei ZHOU,Yu-xuan XIAO. Microscopic dynamics of sand particles based on X-ray computed tomography and in-situ triaxial compression. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1597-1606.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.012        https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1597

图 1  适用于CT的三轴试验装置
图 2  渥太华砂及其扫描电镜图像
图 3  渥太华砂粒度分布图
图 4  三轴试样制备流程
图 5  渥太华砂三轴剪切试验宏观力学响应曲线
图 6  扫描图像的分水岭算法处理过程
图 7  CT图像灰度分布图
图 8  颗粒球谐重构结果
图 9  渥太华砂形状参数的频率分布演化
图 10  颗粒匹配过程示意图
图 11  2种匹配算法的颗粒形态参数偏差
图 12  颗粒竖直向位移增量
图 13  颗粒转动角度
图 14  3个轴向应变状态下的颗粒非仿射运动空间分布
图 15  剪切过程中配位数频率的分布演化
图 16  剪切过程中局部体积分数频率的分布演化
图 17  配位数对于颗粒非仿射运动的影响
图 18  局部体积分数对于颗粒非仿射运动的影响
1 孙其诚, 金峰 颗粒物质的多尺度结构及其研究框架[J]. 物理, 2009, 38 (4): 225- 232
SUN Qi-cheng, JIN Feng The multiscale structure of granular matter and its mechanics[J]. Physics, 2009, 38 (4): 225- 232
doi: 10.3321/j.issn:0379-4148.2009.04.002
2 王光谦, 孙其诚 颗粒物质及其多尺度结构统计规律[J]. 工程力学, 2009, 26 (Suppl.2): 1- 7
WANG Guang-qian, SUN Qi-cheng Granular matter and the scaling laws[J]. Engineering Mechanics, 2009, 26 (Suppl.2): 1- 7
3 郑虎, 牛文清, 毛无卫, 等 颗粒物质力学及其在工程地质领域中的应用初探[J]. 工程地质学报, 2021, 29 (1): 12- 24
ZHENG Hu, NIU Wen-qing, MAO Wu-wei, et al Mechanics of granular material and the application in engineering geology[J]. Journal of Engineering Geology, 2021, 29 (1): 12- 24
doi: 10.13544/j.cnki.jeg.2021-0017
4 周伟, 马刚, 刘嘉英, 等 高堆石坝筑坝材料宏细观变形分析研究进展[J]. 中国科学: 技术科学, 2018, 48 (10): 1068- 1080
ZHOU Wei, MA Gang, LIU Jia-ying, et al Review of macro-and mesoscopic analysis on rockfill materials in high dams[J]. SCIENTIA SINICA Technologica, 2018, 48 (10): 1068- 1080
doi: 10.1360/N092018-00279
5 CHEN Y, MA G, ZHOU W, et al An enhanced tool for probing the microscopic behavior of granular materials based on X-ray micro-CT and FDEM[J]. Computers and Geotechnics, 2021, 132: 103974
doi: 10.1016/j.compgeo.2020.103974
6 HAGEMEIER T, BOERNER M, BUECK A, et al A comparative study on optical techniques for the estimation of granular flow velocities[J]. Chemical Engineering Science, 2015, 131: 63- 75
doi: 10.1016/j.ces.2015.03.045
7 BANDYOPADHYAY R, GITTINGS A S, SUH S S, et al Speckle-visibility spectroscopy: a tool to study time-varying dynamics[J]. Review of Scientific Instruments, 2005, 76 (9): 093110
doi: 10.1063/1.2037987
8 KOU B Q, CAO Y X, LI J D, et al Granular materials flow like complex fluids[J]. Nature, 2017, 551 (7680): 360- 363
doi: 10.1038/nature24062
9 张攀, 赵雪丹, 张国华, 等 垂直载荷下颗粒物质的声波探测和非线性响应[J]. 物理学报, 2016, (2): 210- 216
ZHANG Pan, ZHAO Xue-dan, ZHANG Guo-hua, et al Acoustic detection and nonlinear response of granular materials under vertical vibrations[J]. Acta Physica Sinica, 2016, (2): 210- 216
10 程壮, 王剑锋 用于颗粒土微观力学行为试验的微型三轴试验仪[J]. 岩土力学, 2018, 39 (3): 1123- 1129
CHENG Zhuang, WANG Jian-feng A mini-triaxial apparatus for testing of micro-scale mechanical behavior of granular soils[J]. Rock and Soil Mechanics, 2018, 39 (3): 1123- 1129
doi: 10.16285/j.rsm.2016.0577
11 SU D, YAN W M 3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector[J]. Powder Technology, 2018, 323: 8- 23
doi: 10.1016/j.powtec.2017.09.030
12 ZHAO B, WANG J F 3D quantitative shape analysis on form, roundness, and compactness with μCT[J]. Powder Technology, 2016, 291: 262- 275
doi: 10.1016/j.powtec.2015.12.029
13 ZHANG D R, MA G, DENG Z R, et al A self-adaptive gradient-based particle swarm optimization algorithm with dynamic population topology[J]. Applied Soft Computing, 2022, 130: 109660
doi: 10.1016/j.asoc.2022.109660
14 KHALILI A, MATYKA M, MOHAMMADI R M, et al Porosity variation within a porous bed composed of multisized grains[J]. Powder Technology, 2018, 338: 830- 835
doi: 10.1016/j.powtec.2018.07.039
15 YANG B H, WU A X, MIAO X X, et al 3D characterization and analysis of pore structure of packed ore particle beds based on computed tomography images[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (3): 833- 838
doi: 10.1016/S1003-6326(14)63131-9
16 WIEBICKE M, ANDO E, VIGGIANI G, et al Measuring the evolution of contact fabric in shear bands with X-ray tomography[J]. Acta Geotechnica, 2020, 15 (1): 79- 93
doi: 10.1007/s11440-019-00869-9
17 CHENG Z, WANG J F A particle-tracking method for experimental investigation of kinematics of sand particles under triaxial compression[J]. Powder Technology, 2018, 328 (1): 436- 451
18 LIM K W, KAWAMOTO R, ANDò E, et al Multiscale characterization and modeling of granular materials through a computational mechanics avatar: a case study with experiment[J]. Acta Geotechnica, 2016, 11 (2): 243- 253
doi: 10.1007/s11440-015-0405-9
19 ANDO E, HALL S A, VIGGIANI G, et al Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach[J]. Acta Geotechnica, 2012, 7 (1): 1- 13
doi: 10.1007/s11440-011-0151-6
20 杨忠平, 刘浩宇, 李进, 等 土石混合料-基岩接触面剪切力学特性及剪切带变形特征研究[J]. 岩石力学与工程学报, 2023, 42 (2): 292- 306
YANG Zhong-ping, LIU Hao-yu, LI Jin, et al Study on shear mechanical properties and deformation characteristics of shear zone of soil-rock mixture-bedrock interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42 (2): 292- 306
21 杨晓娟, 马刚, 周恒, 等 基于复杂网络的岩土颗粒材料分散性失稳先兆研究[J]. 岩土力学, 2022, 43 (7): 1978- 1988
YANG Xiao-juan, MA Gang, ZHOU Heng, et al Study on precursors of diffuse instability of granular materials based on complex network theory[J]. Rock and Soil Mechanics, 2022, 43 (7): 1978- 1988
22 MA G, ZOU Y X, CHEN Y, et al Spatial correlation and temporal evolution of plastic heterogeneity in sheared granular materials[J]. Powder Technology, 2021, 378: 263- 273
doi: 10.1016/j.powtec.2020.09.053
23 MA G, ZHOU W, REGUEIRO R A, et al Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388- 397
doi: 10.1016/j.powtec.2016.11.046
24 CHENG Z, WANG J F, MATTHEW R C, et al A miniature triaxial apparatus for investigating the micromechanics of granular soils with in situ X-ray micro-tomography scanning[J]. Frontiers of Structural and Civil Engineering, 2020, 14 (2): 357- 373
doi: 10.1007/s11709-019-0599-2
25 ZHAO B D, WANG J F, GIOACCHINO V, et al An investigation of single sand particle fracture using X-ray micro-tomography[J]. Géotechnique, 2015, 65 (8): 625- 641
26 SHEN L, FARID H, MCPEEK M A Modeling three-dimensional morphological structures using spherical harmonics[J]. Evolution: International Journal of Organic Evolution, 2009, 63 (4): 1003- 1016
doi: 10.1111/j.1558-5646.2008.00557.x
27 ZHOU B D, WANG J F, WANG H A novel particle tracking method for granular sands based on spherical harmonic rotational invariants[J]. Géotechnique, 2018, 68 (12): 1116- 1123
28 ZHOU B, WANG J F, ZHAO B D Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics[J]. Engineering Geology, 2015, 184: 126- 137
doi: 10.1016/j.enggeo.2014.11.009
29 ZHOU B, WANG J F, WANG H Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 2018, 68 (1): 18- 30
30 付茹, 胡新丽, 周博, 等 砂土颗粒三维形态的定量表征方法[J]. 岩土力学, 2018, 39 (2): 483- 490
FU Ru, HU Xin-li, ZHOU Bo, et al A quantitative characterization method of 3D morphology of sand particles[J]. Rock and Soil Mechanics, 2018, 39 (2): 483- 490
doi: 10.16285/j.rsm.2017.1825
31 MEI J Z, MA G, WANG Q, et al. Micro- and macroscopic aspects of the intermittent behaviors of granular materials related by graph neural network [J]. International Journal of Solids and Structures, 2022: 111763.
32 ZOU Y X, MA G, MEI J Z, et al Microscopic origin of shape-dependent shear strength of granular materials: a granular dynamics perspective[J]. Acta Geotechnica, 2022, 17 (7): 2697- 2710
doi: 10.1007/s11440-021-01403-6
33 ZHANG Y B, ZHOU W, MA G, et al The structure-property relationship of granular materials with different friction coefficients: insight from machine learning[J]. Extreme Mechanics Letters, 2022, 54: 101759
doi: 10.1016/j.eml.2022.101759
34 CHENG Z, WANG J F Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography[J]. Soils and Foundations, 2018, 58 (6): 1492- 1510
doi: 10.1016/j.sandf.2018.08.008
35 SCHALLER F M, KAPFER S C, EVANS M E, et al Set Voronoi diagrams of 3D assemblies of aspherical particles[J]. Philosophical Magazine, 2013, 93 (31-33): 3993- 4017
doi: 10.1080/14786435.2013.834389
36 邹宇雄, 马刚, 李易奥, 等 椭球颗粒体系剪切过程中自由体积的分布与演化[J]. 力学学报, 2021, 53 (9): 2374- 2383
ZOU Yu-xiong, MA Gang, LI Yi-ao, et al Distribution and evolution of free volume of ellipsoidal particle systems during shearing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (9): 2374- 2383
doi: 10.6052/0459-1879-21-255
37 SCHALLER F M, NEUDECKER M, SAADATFAR M, et al Local origin of global contact numbers in frictional ellipsoid packings[J]. Physical Review Letters, 2015, 114 (15): 158001
doi: 10.1103/PhysRevLett.114.158001
38 XIAO S, LIU H, BAO E, et al Finding defects in disorder: strain-dependent structural fingerprint of plasticity in granular materials[J]. Applied Physics Letters, 2021, 119 (24): 241904
doi: 10.1063/5.0068508
[1] 庄心善,周睦凯,周荣,陶高梁. EPS改良膨胀土孔隙特征与滞回曲线形态[J]. 浙江大学学报(工学版), 2022, 56(7): 1353-1362, 1403.
[2] 陈绍祥,曹志刚,叶星池,蔡袁强,张琪. 考虑温度效应的路基粗粒填料亚塑性模型[J]. 浙江大学学报(工学版), 2022, 56(5): 938-946, 976.
[3] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[4] 冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.
[5] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[6] 李亚峰,聂如松,冷伍明,程龙虎,梅慧浩,董俊利. 间歇性循环荷载作用下细粒土的变形特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2109-2119.
[7] 闫东明,黄之昊,陈功,钱昊,邓嘉华,刘毅. 低温烧结活性瓷釉涂层钢筋耐腐蚀性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 56-63.
[8] 凌道盛,李奖,王文军,胡成宝. 人工制备土的结构性及其对应变局部化的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1689-1696.
[9] 谢约翰,唐朝生,刘博,程青,尹黎阳,蒋宁俊,施斌. 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良[J]. 浙江大学学报(工学版), 2019, 53(8): 1438-1447.
[10] 余良贵,周建,温晓贵,徐杰,罗凌晖. 重塑高岭土渗透各向异性影响因素[J]. 浙江大学学报(工学版), 2019, 53(2): 275-283.
[11] 李奔奔, 江佳斐, 豆香香, 肖平成. 新型被动式真三轴试验装置[J]. 浙江大学学报(工学版), 2017, 51(9): 1688-1694.
[12] 丁智, 洪其浩, 魏新江, 张孟雅, 郑勇. 地铁列车荷载下人工冻融软土微观试验研究[J]. 浙江大学学报(工学版), 2017, 51(7): 1291-1299.
[13] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[14] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[15] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.